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källan anges. Mångfaldigande av inneh̊allet, inklusive lagring i n̊agon form, i kom-
mersiellt syfte är förbjudet utan medgivande av utgivarna. Begäran om tillst̊and att
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Non-Linear Cosmological Redshift:
The Exact Theory

According to General Relativity

Dmitri Rabounski

Abstract: A new method of calculation is applied to the frequency
of a photon according to the travelled distance. It consists in solving
the scalar geodesic equation (equation of energy) of the photon, and
manifests gravitation, non-holonomity, and deformation of space as
the intrinsic geometric factors affecting the photon’s frequency. In
the space of Schwarzschild’s mass-point metric, the well-known gravi-
tational redshift has been obtained. No frequency shift has been found
in the rotating space of Gödel’s metric, and in the space of Einstein’s
metric (a homogeneous distribution of ideal liquid and physical vac-
uum). The other obtained solutions manifest a cosmological effect:
its magnitude increases with distance. The parabolic cosmological
blueshift has been found in the space of a sphere of incompressible
liquid (Schwarzschild’s metric), and in the space of de Sitter’s metric,
which is a sphere filled with physical vacuum whose density is positive
(it is a redshift, if the vacuum density is negative). The exponential
cosmological redshift has been found in the expanding space of Fried-
mann’s metric (empty or filled with ideal liquid and physical vacuum).
This explains the accelerate expanding Universe. The redshift reaches
z = eπ − 1 = 22.14 at the event horizon. These results are obtained
in a purely geometric way, without the use of the Doppler effect.
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§1. Problem statement. This is the second part of my research,
which was started in the publication [1] where I introduced the cosmo-
logical mass-defect — a new predicted effect revealed according to the
General Theory of Relativity. The essence of this effect is that a mass-
bearing particle changes its relativistic mass according to the distance
travelled by it. The magnitude of this effect can be either positive or
negative, depending on the metric of that particular space (the kind of
universe) wherein the particle travels.

As was shown, the cosmological mass-defect is obtained after in-
tegrating the scalar geodesic equation (equation of energy) of a mass-
bearing particle. This equation determines the relativistic energy and
mass of the particle at any distance (and moment of time) of its travel.
When integrating the equation, the components of the fundamental met-
ric tensor gαβ are used according to the particular space metric (uni-
verse) under consideration. Thus the cosmological mass-defect can be
calculated in each particular universe. Following this way, I showed that
the cosmological mass-defect is present in most of the main (principal)
cosmological models, and provided detailed calculation of its magnitude
in each of these cases [1]. In the cosmological models, where this effect is
present, the relativistic mass change becomes essential only at distances
of the galaxies (“cosmologically large” distances).

This is the cosmological mass-defect in a nutshell. As was pointed
out at the end of my previous paper [1], a logical continuation of this
research would be solving the scalar geodesic equation of a massless
particle (light-like particle, e.g. a photon). As a result, we should expect
to obtain the frequency shift of the photon according to the travelled
distance in each of the cosmological models.

Naturally, consider the geodesic equations. According to Zelmanov’s
chronometrically invariant formalism [2–4], any four-dimensional (gen-
erally covariant) quantity is presented with its observable projections
onto the line of time and the spatial section of an observer∗. This is as
well true about the generally covariant geodesic equation. The time pro-
jection of it is the scalar geodesic equation (equation of energy). The
spatial projection is the three-dimensional equation of motion of the
particle. As was obtained by Zelmanov [2–4], the projected (chronomet-

∗This formalism, known also as the theory of chronometric invariants, was in-
troduced in 1944 by Abraham Zelmanov. It is originally given in his primary publi-
cations [2–4], while more details of the chronometrically invariant formalism can be
found in the books [5, 6]. Chronometric invariance means that the quantity, which
possesses this property, is invariant along the observer’s three-dimensional spatial
section (which can be curved, inhomogeneous, deforming, rotating, etc.).
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rically invariant) geodesic equations of a mass-bearing particle, whose
relativistic mass is m, are

dm

dτ
− m

c2
Fiv

i +
m

c2
Dikv

ivk = 0 , (1.1)

d(mvi)

dτ
−mF i + 2m

(
Di

k +A·i
k·
)
vk +m△i

nkv
nvk = 0 , (1.2)

while the projected geodesic equations of a massless (light-like) particle
(we denote its relativistic frequency as ω) have the form

dm

dτ
− m

c2
Fi c

i +
m

c2
Dik c

ick = 0 , (1.3)

d(ωci)

dτ
− ωF i + 2ω

(
Di

k +A·i
k·
)
ck + ω△i

nk c
nck = 0 , (1.4)

where the derivation parameter dτ =
√
g00dt− 1

c2
vidx

i is the physically
observable (proper) time, which depends on the gravitational poten-
tial w= c2

(
1−√

g00
)

and the linear velocity vi =− cg0i√
g00

of the three-
dimensional rotation of space. The factors affecting the particles are:
the gravitational inertial force Fi, the angular velocity Aik of the rota-
tion of space due to its non-holonomity, the deformation Dik of space,
and the non-uniformity of space (the Christoffel symbols △i

jk). Two
factors of these affect the energy of the particle (according to the scalar
geodesic equation, which is the equation of energy)

Fi =
1

√
g00

(
∂w

∂xi
− ∂vi

∂t

)
,

√
g00 = 1− w

c2
, (1.5)

Dik =
1

2

∗∂hik

∂t
, Dik = −1

2

∗∂hik

∂t
, D = hikDik =

∗∂ ln
√
h

∂t
, (1.6)

where
∗∂
∂t

= 1√
g00

∂
∂t

, and hik is the chr.inv.-metric tensor

hik = −gik +
1

c2
vivk , hik = −gik, hi

k = δik . (1.7)

As is seen, the geodesic equations of mass-bearing and massless par-
ticles have the same form. Only the sublight velocity vi and the rela-
tivistic mass m are used for mass-bearing particles instead of the light
velocity ci and the frequency ω of a photon.

It is natural then to suggest that we could solve the scalar geodesic
equation of massless particles, which is equation (1.3), in analogy to, as I
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solved in [1], the scalar geodesic equation of mass-bearing particles (1.1)
with the components of the fundamental metric tensor gαβ according to
the respective space metrics (cosmological models).

However, at the end of my previous publication [1], I supposed that
this is not a trivial task. My supposition was based on the fact that
mass-bearing particles travel in the so-called non-isotropic region of
space (space-time), which is the home of the sublight-speed and superlu-
minal trajectories. Massless particles travel in the isotropic space, which
is the home of the trajectories of light. The four-dimensional interval is
zero everywhere in the isotropic space, while the interval of observable
time dτ and the three-dimensional observable interval dσ2 =hik dx

idxk

are nonzero and equal to each other

ds2 = c2dτ2 − dσ2 = 0

c2dτ2 = dσ2 ̸= 0

}
. (1.8)

As a result, the isotropic space (space-time) is strict non-holonomic:
the lines of time meet the three-dimensional coordinate lines at any
point therein, and, hence, the isotropic space rotates as a whole at each
of its points with the velocity of light (see [7,8] for detail). In terms of the
language of algebra, the isotropic space condition, by equalizing the en-
tire formula of ds2 = gαβ dx

αdxβ to zero, implies an additional relation
among the particular components of gαβ which thus can be transformed
into each other in a certain way that does not violate the invariance of
the metric as a whole∗. This additional condition should be taken into
account when considering any problem in the isotropic space. As a re-
sult, the scalar equation of isotropic geodesics may have another solution
than that obtained after integrating the scalar equation of non-isotropic
geodesics. In other words, the frequency shift of photons may have an-
other formulation than the relativistic mass change (mass-defect) of
mass-bearing particles travelling in the same space (space-time).

This is why I initially split this study into two parts where, in the
first part [1], the scalar geodesic equation of mass-bearing particles is
solved, thus introducing the cosmological mass-defect.

However, after studying this problem in detail, I have arrived at
another conclusion. Namely — the light-speed rotation, which is at-

∗In particular, there should be a replacement among the components g00 and g0i.
In the case of Minkowski’s space, which is the basic space-time of Special Relativity,
this replacement means that the isotropic region of it should have the non-diagonal
metric where g00 =0, g0i =1, and g11 = g22 = g33 =−1. Such isotropic metrics were
studied in already the 1950’s, by Alexei Petrov. See his Einstein Spaces [9]. For
instance, §25 and the others therein.
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tributed to the isotropic space (even in Minkowski’s space, which is
the basic space-time of Special Relativity) can be registered only by
an observer who accompanies the isotropic space and photon. In other
words, this is a light-like observer whose home is the isotropic space. A
regular (sublight-speed) observer shall observe the isotropic space and
all events in it according to the values of the fundamental metric ten-
sor gαβ which characterize his own (non-isotropic) space — home of
“solid objects”. This is because, according to the theory of physically
observable quantities, an observer should accompany his own reference
body and coordinate grids spanned over it. As a result, the isotropic
geodesic equations should be solved for a sublight-speed observer in
the same way as the non-isotropic geodesic equations. In other words,
when solving the scalar equation of isotropic geodesics, we should use
the components of the fundamental metric tensor which are attributed
to the home space (the coordinate grids and clocks) of “solid objects”
which is the reference space of a regular observer.

I will give a complete explanation of this thesis later, in one of the
chapters of the book on the cosmological mass-defect and the cosmo-
logical redshift (now — under preparation).

In the next paragraphs of this paper, after solving the scalar equation
of isotropic geodesics in each of the main “cosmological” metrics, we will
arrive at the formula of the frequency shift of a photon according to the
travelled distance in each of the universes under consideration.

Actually, the method of integration and the solutions will have the
same form as those for the cosmological mass-defect obtained for mass-
bearing particles in my recent paper [1]. Therefore, to avoid repetition,
I will omit some obvious formalities while simply referring to [1] wherein
the calculations were explained with all necessary details.

§2. Local redshift in the space of a mass-point (Schwarz-
schild’s mass-point metric). This is the metric of an empty space
(in the sense that there is no distributed matter), wherein the field of
gravitation and curvature is due to a spherical mass approximated as a
mass-point at distances much larger than its radius. The metric, intro-
duced in 1916 by Karl Schwarzschild [10], represented in the spherical
three-dimensional coordinates x1 = r, x2 = φ, x3 = θ, has the form

ds2 =
(
1− rg

r

)
c2dt2 − dr2

1− rg
r

− r2
(
dθ2 + sin2θdφ2

)
, (2.1)

where r is the distance from the mass M , rg = 2GM
c2

is the corresponding
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gravitational radius of the mass, and G is the world-constant of gravi-
tation.

This metric is free of rotation and deformation. The field of gravita-
tion is the only factor affecting particles in the space. It is determined by
g00 which is g00 =1− rg

r according to the metric (2.1). Differentiating
the gravitational potential w= c2

(
1−√

g00
)

according to the definition
of the gravitational inertial force (1.5), then applying r≫ rg (the field
source is outside the state of gravitational collapse), we obtain the solely
nonzero radial component of the force

F1 = −c2rg
2r2

= −GM

r2
. (2.2)

In such a space, the scalar geodesic equation for a massless (light-
like) particle (1.3), e.g. a photon, takes the form

dω

dτ
− ω

c2
F1 c

1 = 0 , (2.3)

where c1 = dr
dτ is the observable velocity of light (massless particle). This

equation transforms into dω
ω = 1

c2
F1dr, which is d lnω=− GM

c2
dr
r2

. It has
the solution

ω = ω0 e

GM

c2r ≃ ω0

(
1 +

GM

c2 r

)
. (2.4)

This solution means that a photon emitted by a massive body, which
is the field source, gains an additional energy due to the presence of the
gravitational field. This phenomenon decreases with distance from the
field source according to the formula (2.4). As a result, the photon’s
energy and frequency should decrease with the travelled distance: the
photon’s frequency should be redshifted when registered by a observer,
who is distantly located from the field source. For instance, let a photon
have a frequency ω0 being emitted from the surface of a star, whose
mass is M and whose radius is r∗. Then its frequency registered by an
observer, who is located at a distance r from the star, is ω<ω0. We
then obtain, according to the formula (2.4), that the observed redshift
of the photon has the magnitude

z =
ω0 − ω

ω
= e

GM

c2r∗
− GM

c2r − 1 ≃ GM

c2 r∗
− GM

c2 r
. (2.5)

Note that this is a local phenomenon, not a cosmological effect: its
magnitude decreases with distance from the source of the field, very fast,
so that it becomes actually zero at “cosmologically large” distances.
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This is the gravitational redshift — the well-known effect of the
General Theory of Relativity (first registered in the spectra of white
dwarfs). I speak of this effect herein, because of the new method of
derivation. Classically, it is derived from the conservation of energy of
a photon travelling in a stationary gravitational field [11, §88]. The
same classical method of derivation was also used by Zelmanov. On
the other hand, our method of deduction, based on the integration of
the scalar equation of isotropic geodesics, allows to represent this effect
as something particular among the other similar effects which can be
calculated for any other space metric (gravitational field).

§3. Local redshift in the space of an electrically charged mass-
point (Reissner-Nordström metric). This is an extension of the
mass-point metric, where the spherical massive island of matter is elec-
trically charged. As a result, the space of the Reissner-Nordström met-
ric is not empty but filled with a spherically symmetric electromagnetic
field (distributed matter). This metric was first considered in 1916 by
Hans Reissner [12] then, in 1918, by Gunnar Nordström [13]. It is

ds2 =

(
1− rg

r
+

r2q
r2

)
c2dt2− dr2

1− rg
r +

r2q
r2

−r2
(
dθ2 + sin2θdφ2

)
, (3.1)

with the same denotations as those of the mass-point metric, while
r2q =

Gq2

4πε0c4
, where q is the corresponding electric charge, and 1

4πε0
is

Coulomb’s force constant. This metric is as well free of rotation and
deformation. The gravitational inertial force is determined, according
to g00 =1− rg

r +
r2q
r2

, by both Newton’s force and Coulomb’s force. As-
suming that the source of the field is outside the state of gravitational
collapse (r≫ rg), and that the electric field is weak (r≫ rq), we obtain

F1 = −c2

2

(
rg
r2

−
2r2q
r3

)
= −GM

r2
+

Gq2

4πε0c2
1

r3
. (3.2)

The scalar geodesic equation for a massless particle (1.3) takes the
form

dω

dτ
− ω

c2
F1 c

1 = 0 , (3.3)

which transforms into d lnω=
(
− GM

c2r2
+ Gq2

4πε0c4
1
r3

)
dr, and solves as

ω = ω0 e

GM

c2r
− 1

2r2
Gq2

4πε0c4 ≃ ω0

(
1 +

GM

c2r
− 1

2r2
Gq2

4πε0c4

)
. (3.4)
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This solution manifests that photons should also gain an additional
energy in the field of an electrically charged massive body. But this
additional energy is lesser than that gained from the gravitational field
(the first term in our formula 3.4), owing to an energy loss due to the
presence of the electric field (the negative second term in 3.4).

We observe no such an electrically charged massive body (like plan-
ets, stars, or galaxies) whose gravitational field would be weaker than
its electromagnetic field. We therefore should conclude that the pho-
ton’s frequency in the space of the Reissner-Nordström metric should be
redshifted when registered by an observer who is located at a distance
r from the field source. The redshift, according to our solution (3.4),
should be

z =
ω0 − ω

ω
= e

GM

c2r∗
− 1

2r2∗

Gq2

4πε0c4
− GM

c2r
+ 1

2r2
Gq2

4πε0c4 − 1 ≃

≃ GM

c2 r∗
− 1

2r2∗

Gq2

4πε0c4
− GM

c2 r
+

1

2r2
Gq2

4πε0c4
, (3.5)

where r∗ is the radius of the field source. This redshift shall be lesser
than the purely gravitational redshift (considered in §2).

The magnitude of the redshift decreases with distance from the field
source. Therefore, the redshift in the space of the Reissner-Nordström
metric is also a local phenomenon, not a cosmological effect.

Herein we have obtained that the frequency shift can be due to not
only the field of gravitation, but also due to the electromagnetic field.
Such an effect was not considered in the General Theory of Relativity
prior to the present study.

Following the same deduction, the frequency shift could also be cal-
culated in two other primary extensions of the mass-point metric. The
Kerr metric (introduced in 1963 by Roy P. Kerr [14, 15]) describes the
space of a rotating mass-point. The Kerr-Newman metric (introduced
in 1965 by Ezra T. Newman [16, 17]) describes the space of a rotating,
electrically charged mass-point. However, there is a problem with the
calculation. These metrics, determined in the vicinity of the mass-point
(field source), do not contain the distribution function of the rotational
velocity with distance from the source. Therefore, when integrating the
geodesic equation, we should be enforced to introduce these functions
on our own behalf (which can be true or false, depending on our under-
standing of the space rotation). We therefore omit these two cases from
consideration.
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§4. No frequency shift present in the rotating space with self-
closed time-like geodesics (Gödel’s metric). This space metric,
introduced in 1949 by Kurt Gödel [18], has the form

ds2 = a2

[
(dx̃0)2+2ex̃

1

dx̃0dx̃2−(dx̃1)2+
e2x̃

1

2
(dx̃2)2−(dx̃3)2

]
, (4.1)

where a= const> 0 [cm] is a constant determined as a2 = c2

8πGρ
=− 1

2λ
.

Such a space is not empty, but filled with dust of density ρ, and physical
vacuum (λ-field). Also, it rotates so that time-like geodesics are self-
closed therein.

Gödel’s metric was originally given in the form (4.1), through the di-
mensionless Cartesian coordinates dx̃0 = 1

a dx
0, dx̃1 = 1

a dx
1, dx̃2 = 1

a dx
2,

dx̃3 = 1
a dx

3, which emphasize the meaning of the world-constant a.
We now move to the regular Cartesian coordinates adx̃0 = dx0 = cdt,
adx̃1 = dx1, adx̃2 = dx2, adx̃3 = dx3, which are more suitable for the
calculation of the components of the fundamental metric tensor. We
obtain

ds2 = c2dt2 + 2e
x1

a cdtdx2 − (dx1)2 +
e

2x1

a

2
(dx2)2 − (dx3)2, (4.2)

where, as is seen,

g00 = 1 , g02 = e
x1

a , g01 = g03 = 0 . (4.3)

Therefore the space of Gödel’s metric is free of gravitation and defor-
mation, but rotates with a three-dimensional linear velocity vi =− cg0i√

g00

whose only nonzero component is

v2 = −ce
x1

a , (4.4)

which does not depend on time. In this case, the second (inertial) term
of the gravitational inertial force Fi (1.5) is zero as well.

All factors which could change the frequency of a photon are absent
in the space of Gödel’s metric. This means that photons should not
gain a frequency shift with the distance travelled therein.

§5. Cosmological blueshift in the space of Schwarzschild’s met-
ric of a sphere of incompressible liquid. This metric was intro-
duced in 1916 by Karl Schwarzschild [19] with a limitation imposed on
the fundamental metric tensor (he supposed that its three-dimensional
components should not possess breaking). This metric in the general
form, which is free of the said limitation, was obtained in 2009 by Larissa
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Borissova (see formula 3.55 in [20], or (1.1) in [21]). It has the form

ds2 =
1

4

(
3

√
1− κρ0a2

3
−
√
1− κρ0r2

3

)2
c2dt2 −

− dr2

1− κρ0r2

3

− r2
(
dθ2 + sin2θdφ2

)
, (5.1)

where κ= 8πG
c2

is Einstein’s gravitational constant, ρ0 =
M
V

= 3M
4πa3 is

the density of the liquid, a is the sphere’s radius, and r is the radial
coordinate within it. The metric is free of rotation and deformation.
Only gravitation affects particles due to g00 ̸=1. Differentiating g00 of
the metric (5.1), according to the definition of the gravitational inertial
force Fi (1.5), we obtain the solely nonzero component of the force

F1 = − c2κρ0r

3
√
1− κρ0r2

3

(
3
√
1− κρ0a2

3 −
√
1− κρ0r2

3

) . (5.2)

The scalar geodesic equation for a massless particle (1.3) in this case
takes the form

dω

dτ
− ω

c2
F1 c

1 = 0 , (5.3)

which is d lnω= 1
c2
F1dr. Thus we arrive at the equation

d lnω =
κρ0r

3
√
1− κρ0r2

3

dr(
3
√

1− κρ0a2

3 −
√
1− κρ0r2

3

) (5.4)

which transforms into

d lnω = −d ln

(
3

√
1− κρ0a2

3
−
√
1− κρ0r2

3

)
(5.5)

and solves as

ω = ω0

3
√

1− κρ0a2

3 − 1

3
√
1− κρ0a2

3 −
√
1− κρ0r2

3

. (5.6)

Herein κρ0a
2

3 is a world-constant of the space. Generally speaking,
its numerical value is permitted to be within the range 0⩽ κρ0a

2

3 ⩽ 1.
This is in order to keep 1− κρ0a

2

3 ⩾ 0 (the square root from the remain-
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der should remain a real value).
To simplify and analyse the obtained solution (5.6), we use the fol-

lowing intermediate substitution. Because rg = 2GM
c2

is the gravitational
radius of a sphere with the mass M = ρ0V = 4

3 πρ0a
3 and the radius a,

we have rg =
κρ0a

3

3 and, therefore, κρa2

3 =
rg
a . With these, the obtained

solution (5.6) takes the form

ω = ω0

3
√
1− rg

a − 1

3
√
1− rg

a −
√

1− rg r2

a3

, (5.7)

which is more suitable for analysis and further approximations.
Since rg ≪ a, at distances r which are very small in comparison to

the radius of such a universe (r≪ a), the obtained solution (5.6) takes
the simplified form

ω ≃ ω0

(
1− κρ0r

2

12

)
. (5.8)

The obtained solution manifests that, in a spherical universe filled
with incompressible liquid, a photon should gain energy and frequency
with the travelled distance. This is a blueshift effect: the more distant
an object we observe in such a universe is, the more blueshifted should
be the lines of its spectrum. Hence, this is a cosmological effect. We
will therefore further refer to this effect as the cosmological blueshift.

According to our formulae (5.6) and (5.8), the cosmological blueshift
increases with the square of the distance from the object. Let the photon
have a frequency ω being emitted by a source located at a distance r
from an observer. Then, keeping in mind that ω0 is the photon’s fre-
quency registered by the observer (r=0), we obtain the cosmological
blueshift in a spherical universe filled with incompressible liquid

z =
ω − ω0

ω0
= −

1−
√

1− κρ0r2

3

3
√

1− κρ0a2

3 −
√
1− κρ0r2

3

, (5.9)

which at small distances r of the photon’s travel (r≪ a), according to
our formula (5.9), takes the simplified form

z ≃ − κρ0r
2

12
. (5.10)

For a photon emitted by a source, which is located at the event
horizon (where r= a), the energy and frequency gain are ultimately
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high in such a universe. In this case, according to our solution (5.6),
the observed frequency of the photon should be

ωmax = ω0

3
√

1− κρ0a2

3 − 1

2
√

1− κρ0a2

3

. (5.11)

while the cosmological blueshift of the photon should take its ultimately
high numerical value in such a space, which is

zmax = −
1−

√
1− κρ0a2

3

2
√

1− κρ0a2

3

. (5.12)

In my view, the main criterion for the applicability of a cosmological
model to our Universe should be the redshift law predicted at small
distances r≪ a. It is surely registered in most galaxies, which are not
so much distant as the event horizon. However, the obtained solution
(5.10) manifests a blueshift. This is a serious reason for us to conclude
that Schwarzschild’s metric of a sphere of incompressible liquid cannot
be applied to our Universe as a whole.

On the other hand, the recent study by Borissova [20] shows that
the Schwarzschild model is applicable to the Sun and the planets, by
the assumption that these objects can be approximated as spheres of
incompressible liquid.

In addition, she has obtained [20] that the space metric inside a
Schwarzschild sphere of incompressible liquid in the state of gravita-
tional collapse is equivalent to de Sitter’s space metric (see de Sitter’s
metric below). In this case, i.e., inside a collapsed Schwarzschild liquid
sphere, the gravitational force changes sign from attraction to repulsion,
and, therefore, the cosmological blueshift (deduced above) changes to
the corresponding cosmological redshift. This means that a collapsed
Schwarzschild liquid sphere (the gravitational force inside such a sphere
is a force of repulsion) can theoretically be conceivable as a model of
our Universe.

§6. Cosmological redshift and blueshift in the space of a sphere
filled with physical vacuum (de Sitter’s metric). This metric,
introduced in 1917 by Willem de Sitter [22,23], has the form

ds2 =

(
1− λr2

3

)
c2dt2 − dr2

1− λr2

3

− r2
(
dθ2 + sin2θdφ2

)
, (6.1)
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and describes a space filled with a spherically symmetric distribution
of physical vacuum (determined by the λ-term of Einstein’s equations).
Such a space is free of rotation and deformation, but contains a non-
Newtonian gravitational field determined by g00 =1− λr2

3 of the metric.
Differentiating the g00 according to the definition of the gravitational
inertial force Fi (1.5), we obtain its solely nonzero component

F1 =
λc2

3

r

1− λr2

3

, (6.2)

whose magnitude increases with distance. This is a force of repulsion
if λ> 0 (physical vacuum has a negative density), and is a force of
attraction if λ< 0 (the vacuum density is positive).∗

The scalar geodesic equation for a massless particle (1.3), which in
this case has the form

dω

dτ
− ω

c2
F1 c

1 = 0 , (6.3)

thus transforms into d lnω= 1
c2
F1dr, which is

d lnω =
λr

3

dr

1− λr2

3

, (6.4)

or, in another form,

d lnω = −1

2
d ln

(
1− λr2

3

)
. (6.5)

This equation solves as

ω =
ω0√

1− λr2

3

, (6.6)

where λr2

3 should be in the range 0⩽ λr2

3 ⩽ 1. For yet, observational
astronomy provides only information about the upper boundary of the
numerical value of the λ-term, which is as small as λ⩽ 10−56 cm−2.
Therefore, our obtained solution (6.6) at small distances r takes the
simplified form

ω ≃ ω0

(
1 +

λr2

6

)
. (6.7)

∗See Chapter 5 of [5], especially §5.3 and §5.5 therein. It is still unclear what
sign is really attributed to the λ-term of Einstein’s equations.



16 The Abraham Zelmanov Journal — Vol. 5, 2012

The obtained result can lead to two opposite conclusions, depending
on the sign of λ.

Einstein’s equations have the form Rαβ +
1
2 gαβR=−κ Tαβ +λgαβ .

Given a space of de Sitter’s metric, the λ-term is connected to the
density of physical vacuum ρ, the four-dimensional curvature K, and
the three-dimensional observable curvature C as ρ=− λ

κ =− 3K
κ = C

2κ
(see §5.3 of [5], for details).

Classically, we assume λ> 0 so that physical vacuum has negative
density and energy as any other potential field. In this case, the non-
Newtonian gravitational force is a force of repulsion, the space (space-
time) has a positive four-dimensional curvature K> 0, while the three-
dimensional observable curvature is negative C < 0.

Having λ> 0, the frequency shift we have obtained in formula (6.6)
and in its simplified form (6.7) implies that a photon travelling to the
observer in a de Sitter universe should loose energy and frequency due to
the deceleration of the photon by the non-Newtonian force of repulsion
(the λ-field) that is present in the space. As a result, the photon’s
frequency should be redshifted upon arrival: the more distant an object
we observe in a de Sitter universe where λ> 0 is, the more redshifted
should be the lines of its spectrum. We will therefore further refer to
this effect as the cosmological redshift. The magnitude of the redshift,
according to our solution (6.6), shall be

z =
ω − ω0

ω0
=

1√
1− λr2

3

− 1 (6.8)

where ω=ω(r) is the frequency of the photon being emitted by a source,
which is located at a distance r from the observer, while the photon’s
frequency registered by the observer is ω0 =ω(r=0). At small distances
of the photon’s travel, according to (6.7), we have the redshift

z ≃ λr2

6
. (6.9)

At the event horizon — the ultimately large distance r= a, which in
a de Sitter universe is determined by the obvious condition λr2

3 = λa2

3 =1,
— the photon’s frequency and redshift take their ultimately high nu-
merical values. According to our solutions for the photon’s frequency
(6.6) and its redshift (6.8), they are

ωmax =
ω0√

1− λa2

3

= ∞ , (6.10)



Dmitri Rabounski 17

zmax =
1√

1− λa2

3

− 1 = ∞ . (6.11)

Contrarily, one may assume that the λ-field is not a potential field
but a substance.

In this case, it should have positive density and energy, which means
that the acting non-Newtonian gravitational force is a force of attrac-
tion, the space (space-time) has a negative four-dimensional curvature
K< 0, its three-dimensional observable curvature is positive C > 0, and
also λ< 0.

In such a de Sitter universe (λ< 0), according to the solutions we
have obtained, a photon travelling to the observer should gain energy
and frequency with the distance travelled by it. This is due to the
acceleration of the photon by the non-Newtonian force of attraction
(the λ-field) that is present in the space. This means that the photon’s
frequency should be blueshifted upon arrival: the more distant an object
we observe is, the more bluehifted should be the lines of its spectrum.
In other words, the cosmological blueshift should be registered in a de
Sitter universe where λ< 0. In this case,

ω =
ω0√

1 + λr2

3

, (6.12)

z =
1√

1 + λr2

3

− 1 , (6.13)

or, at small distances (r≪ a),

ω ≃ ω0

(
1− λr2

6

)
, (6.14)

z ≃ − λr2

6
, (6.15)

while the ultimate frequency and blueshift are

ωmax =
ω0√

1 + λa2

3

=
ω√
2
≃ 0.71ω0 , (6.16)

zmax =
1√

1 + λa2

3

− 1 ≃ −0.29 . (6.17)



18 The Abraham Zelmanov Journal — Vol. 5, 2012

In the present year, 2011, the highest redshifts registered by the
astronomers are z=10.3 (the galaxy UDFj-39546284) and z=8.55 (the
galaxy UDFy-38135539). Three dozens of other galaxies and quasars
have redshifts higher than z=1. The number of such high redshifted
cosmic objects increases with each year of such observations. Also, a
non-linearity of the observed redshift law was recently discovered by
astronomers in the spectra of distant galaxies. We therefore should
expect that our Universe is the version of de Sitter worlds that has a
non-linear redshift (see above).

§7. No frequency shift present in the space of a sphere filled
with ideal liquid and physical vacuum (Einstein’s metric). This
metric, introduced in 1917 by Albert Einstein [24], describes a sphere
filled with homogeneous and isotropic distribution of ideal (non-viscous)
liquid and physical vacuum (λ-field). It has the form

ds2 = c2dt2 − dr2

1− λr2
− r2

(
dθ2 + sin2θdφ2

)
. (7.1)

This metric is free of gravitation (g00 =1), rotation (g0i =0), and
deformation (the three-dimensional components gik of the fundamental
metric tensor do not depend on time). This means that such a space
contains no one factor which could change the frequency of a photon.
Hence, the photon’s frequency remains unchanged with the distance
travelled in the space of Einstein’s metric.

§8. Cosmological redshift and blueshift in the deforming
spaces of Friedmann’s metric. The models, introduced in 1922 by
Alexander Friedmann [25, 26], are free of gravitation and rotation, but
are deforming, which points to the presence of the functions gik = gik(t).
In other words, the three-dimensional subspace of the space-time de-
forms. It may expand, compress, or oscillate. Such a space can be
empty, or filled with a homogeneous and isotropic distribution of ideal
(non-viscous) liquid in common with physical vacuum (λ-field), or filled
with one of the media. In particular, it can be dust∗.

Friedmann’s metric has the form

ds2 = c2dt2 −R2

[
dr2

1− κr2
− r2

(
dθ2 + sin2θdφ2

)]
, (8.1)

∗The energy-momentum tensor of ideal liquid is the same as that of dust except
that the latter is marked by the absence of the term containing pressure. In other
words, dust is pressureless ideal liquid.
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where R=R(t) is the curvature radius of the space, while κ=0,±1 is
the curvature factor. If κ=−1, the three-dimensional subspace has the
hyperbolic (open) geometry. If κ=0, its geometry is flat. If κ=+1,
it has elliptic (closed) geometry. The models with κ=+1 and κ=−1
were considered in 1922 and 1924 by Friedmann [25, 26]. The general-
ized formulation of the metric containing κ=0,±1 was first examined
in 1925 by Georges Lemaître [27, 28], then in 1929 by Howard Percy
Robertson [29], and in 1937 by Arthur Geoffrey Walker [30]. Therefore,
Friedmann’s metric in its generalized form (8.1) is also known as the
Friedmann-Lemaître-Robertson-Walker metric.

Friedmann’s metric is expressed here through a “homogeneous” ra-
dial coordinate r. It comes across as the regular radial coordinate di-
vided by the curvature radius whose scales change accordingly during
expansion or compression of the space. As a result, the homogeneous
radial coordinate r does not change its scale with time.

The scalar geodesic equation (1.3) for a massless particle, which
travels in a Friedmann universe along the radial coordinate x1, takes
the form

dω

dτ
+

ω

c2
D11 c

1c1 = 0 , (8.2)

where c1 [sec−1] is the solely nonzero component of the observable “ho-
mogeneous” velocity of the massless particle. The square of the velocity
is h11 c

1c1 = c2 [cm2/sec2]. The components of the chr-inv.-metric ten-
sor hik (1.7) can be calculated according to Friedmann’s metric (8.1).
After some algebra, we obtain

h11 =
R2

1− κr2
, h22 = R2r2, h33 = R2r2 sin2θ , (8.3)

h = det ∥hik∥ = h11h22h33 =
R6r4 sin2θ

1− κr2
, (8.4)

h11 =
1− κr2

R2
, h22 =

1

R2r2
, h33 =

1

R2r2 sin2θ
. (8.5)

In the case of mass-bearing particles, the scalar geodesic equation
being in its general form cannot be solved alone. This is because mass-
bearing particles can travel at any sub-light velocity, which is unknown.
We therefore are enforced to find the velocity by solving the vectorial
geodesic equation. This problem was resolved in [1].

Another case — massless (light-like) particles. They travel along
isotropic trajectories, which are the trajectories of light. Their velocity
ci = dxi

dτ is the observable velocity of light, where dτ =√
g00dt− 1

c2 vidx
i is
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the physically observable time. The observable light velocity ci depends
on the gravitational potential w= c2(1−√

g00) and the linear velocity
vi =− cg0i√

g00
of the three-dimensional rotation of space.

In the case of a Friedmann universe, we have g00 =1 and g0i =0.
Hence, dτ = dt in this case. Thus, because h11 c

1c1 = c2, the scalar
geodesic equation of a massless particle (8.2) transforms into

h11
dω

dt
+ ωD11 = 0 , (8.6)

thus we obtain h11
dω
ω =−D11dt, and, finally, the equation

R2

1− κr2
d lnω = −D11dt . (8.7)

This equation is non-solvable being considered in the general form
as here. To solve this equation, we should simplify it by assuming par-
ticular forms of the space deformation (the function R=R(t) of Fried-
mann’s metric) and the curvature factor κ of the space∗. Further, after
the function R=R(t) is assumed, we will see that κ comes out from the
equation. So, we need to assume only R=R(t).

The curvature radius as a function of time, R=R(t), can be found
through the tensor of the space deformation Dik, whose trace

D = hikDik =
∗∂ ln

√
h

∂t
=

1√
h

∗∂
√
h

∂t
=

1

V

∗∂V

∂t
(8.8)

is the speed of relative deformation (expansion or compression) of the
volume [3,4]. In an arbitrary metric space, we have

D =
1

V

∗∂V

∂t
= γ

1

a

∗∂a

∂t
= γ

u

a
, (8.9)

where a is the radius of the volume (V ∼ a3), u is the linear velocity of
its deformation (positive if the space expands, and negative in the case
of compression), and γ= const is the shape factor of the space (γ=3 in
the homogeneous isotropic models [3, 4]).

Two main types of the space deformation, and two respective types of
the function R=R(t) were introduced and then examined in [1]. They
are as follows.

∗The curvature factor κ is included in the spatial component g11 of the funda-
mental metric tensor of Friedmann’s metric (8.1). As a result, and because the space
deformation Dik is determined as the time derivative of the three-dimensional com-
ponents of the observable metric tensor hik =−gik + 1

c2
vivk, the curvature factor

κ is included in the formula of the space deformation.
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1. A constant-speed deforming (homotachydiastolic) universe∗ de-
forms with a constant linear velocity u=

∗∂a
∂t = const. Its radius under-

goes linear changes with time as a= a0 +ut. Thus

D = γ
u

a0 + ut
≃ γ

u

a0

(
1− ut

a0

)
, (8.10)

where D= 3Ṙ
R

as in any Friedmann universe (γ=3). Thus we arrive
at the equation dR

R
= udt

a0 +ut =
d(a0 +ut)
a0 +ut , which is d lnR= d ln (a0 +ut).

It solves as lnR= ln |a0 +ut|+ lnB, i.e., R
B
= a0 +ut. The integration

constant is found from the condition R= a0 at the initial moment of
time t= t0 =0. It is B=1. Therefore, R= a0 +ut. As a result, we
obtain, that in a constant-speed deforming Friedmann universe,

R = a0 + ut , Ṙ = u , (8.11)

D =
3Ṙ

R
=

3u

a0 + ut
, (8.12)

D11 =
RṘ

1− κr2
=

(a0 + ut)u

1− κr2
, (8.13)

D1
1 =

Ṙ

R
=

u

a0 + ut
. (8.14)

2. In a constant-deformation (homotachydiastolic) universe†, each
single volume V (including the total volume of the space), undergoes
equal relative changes with time

D =
1

V

∗∂V

∂t
= γ

u

a
= const , (8.15)

while the linear velocity of the deformation increases with time in the
case of expansion, and decreases if the space compresses. In other words,
this is an accelerate expanding universe or a decelerate compressing
universe, respectively.

∗I refer to this kind of universe as homotachydiastolic (ομοταχυδιαστολικός). Its
origin is homotachydiastoli — ομοταχυδιαστολή — linear expansion with a constant
speed, from όμο which is the first part of όμοιος — the same, ταχύτητα — speed,
and διαστολή — linear expansion (compression is the same as negative expansion).

†I refer to this kind of universe as homotachydioncotic (ομοταχυδιογκωτικό).
This terms originates from homotachydioncosis — ομοταχυδιόγκωσης — volume ex-
pansion with a constant speed, from όμο which is the first part of όμοιος (omeos)
— the same, ταχύτητα — speed, διόγκωση — volume expansion, while compression
can be considered as negative expansion.
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Generally speaking, a volume element, which is not affected by ex-
ternal factors, expands or compresses so that its volume undergoes
equal relative changes with time. We therefore will further consider
a constant-deformation (homotachydioncotic) Friedmann universe.

Because D= 3Ṙ
R

in a Friedmann universe, we assume Ṙ
R
=A= const

for the constant-deformation (homotachydioncotic) case. We obtain the
equation 1

R
dR=Adt, which is d lnR=Adt. As a result, in a constant-

deformation Friedmann universe whose curvature radius at the present
moment of time t= t0 is a0, we obtain

R = a0 e
At, Ṙ = a0AeAt, (8.16)

D =
3Ṙ

R
= 3A = const , (8.17)

D11 =
RṘ

1− κr2
=

a20Ae2At

1− κr2
, (8.18)

D1
1 =

Ṙ

R
= A = const . (8.19)

Thus, substituting D11 =
RṘ

1−κr2
=

a2
0Ae2At

1−κr2
(8.18) into the scalar geo-

desic equation (8.7), we obtain the equation in the form

d lnω = −Adt , (8.20)

where A= Ṙ
R

is a const of the space.
As is seen, this equation is independent of the curvature factor κ of

the particular Friedmann space under consideration. In other words,
by solving this equation we will arrive at a solution which will be com-
mon for all three types of the constant-deformation (homotachydias-
tolic) Friedmann universe which have hyperbolic (κ=−1), flat (κ=0),
or elliptic (κ=+1) geometry, respectively.

This equation solves, obviously, as lnω=−At+ lnB, where B is an
integration constant. So forth, we obtain ln ω

B
=−At, then, trivially,

ω=Be−At. We calculate the integration constant B from the initial
condition ω=ω0 at the moment of time t= t0 =0. We have B=ω0. As
a result, the final solution of the scalar geodesic equation (8.20) is

ω = ω0 e
−At. (8.21)

At small distances (and duration) of the photon’s travel, the ob-
tained solution takes the simplified form

ω ≃ ω0 (1−At) . (8.22)
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The obtained solution manifests that, in a constant-deformation (ho-
motachydiastolic) Friedmann universe which expands (A> 0), photons
should lose energy and frequency according to the travelled distance.
The energy and frequency loss law is exponential (8.21) at large dis-
tances of the photon’s travel, and is linear (8.22) at small distances.

Accordingly, the photon’s frequency should be redshifted. The mag-
nitude of the redshift increases with the travelled distance. This is a
cosmological redshift, in other words.

Let a photon have an initial frequency ω0 being emitted by a source
(t= t0 =0), and its frequency being registered by an observer to whom
the photon has travelled during the time interval t is ω. Then we obtain
the magnitude of the cosmological redshift in an expanding constant-
deformation (homotachydiastolic) Friedmann universe. It is

z =
ω0 − ω

ω
= eAt − 1 , (8.23)

which is an exponential redshift law. At small distances of the photon
travel, it takes the linearized form

z ≃ At , (8.24)

which manifests a linear redshift law. Expanding the world-constant
A= Ṙ

R
and the duration of the photon’s travel t= d

c , we have

z = e
Ṙ
R

d
c − 1 , (8.25)

where d= ct [cm] is the distance to the source that emitted the photon.
At small distances, we have, respectively, the linear approximation

z ≃ Ṙ

R

d

c
. (8.26)

In the case where such a universe compresses (A< 0), this effect
changes its sign thus, becoming a cosmological blueshift.

Our linearized redshift formula (8.26) is the same as z= Ṙ
R

d
c

obtained
by Lemaître, the “father” of the theory of an expanding universe who in
1925–1927 discovered the linear redshift law∗ [28]. He followed, however,
another way of deduction which limited him only to the linear formula.
He did not arrive at a non-linear generalization of it. Lemaître’s beliefs,
therefore, remained within the range of the linear redshift law.

∗The linear redshift law is now known as Hubble’s law due to Edwin Hubble’s
publication of 1929 [32]. See more details about the dramatic history of this discovery
in the newest notes [33–35] published in 2011 by the historians of science.
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Suppose our world to be an expanding Friedmann universe of the
constant-deformation type. Then galaxies should scatter, being carried
out with the expanding space. Their spectra should therefore manifest
a redshift according to the exponential redshift law (8.25) or, at small
distances, according to the linear redshift law (8.26).

The world-constant A= Ṙ
R

can be found on the basis of astronomi-
cal observations of the objects whose redshift is within the linear range
(the galaxies and quasars which are located not at cosmologically large
distances). For instance, consider the brightest quasar 3C 273. Its ob-
served redshift is z=0.16. Such a redshift means that this object is lo-
cated at a cosmologically small distance (we know distant galaxies and
quasars whose redshift is much higher than z=1). Therefore, when
calculating the redshift for this object, we use the linearized formula
(8.26) of our theory. The observed luminosity distance∗ to the quasar
3C 273 is dL =749Mpc≃ 2.3×1027 cm. According to our formula (8.26),
we obtain that the world-constant A= Ṙ

R
has the numerical value

A =
Ṙ

R
= z

c

dL
= 2.1×10−18 sec−1, (8.27)

which matches the Hubble constant, which is H0 =72± 8 km/sec×Mpc
=(2.3± 0.3)×10−18 sec−1 according to the newest data of the Hubble
Space Telescope [31]. The Hubble constant was initially obtained as the
coefficient of the observed linear law for scattering galaxies: this law
says that galaxies and quasars scatter with the radial velocity u=H0d
increasing with the distance d to the object as 72 km/sec per each Mega-
parsec.

The ultimately high redshift zmax, which could be registered in our
Universe, is calculated by substituting the ultimately large distance into
the redshift law. If following Lemaître’s theory [28], zmax should follow
from the linear redshift law z= Ṙ

R
d
c
=A d

c
. Because A= Ṙ

R
is the world-

constant of the Friedmann space, the ultimately large curvature radius
Rmax is determined by the ultimately high velocity of the space expan-
sion which is the velocity of light Ṙmax = c. Hence, Rmax =

c
A

. The
ultimately large distance dmax (the event horizon) is determined by the
astronomers from the linear law for scattering galaxies u=H0d. This
linear law is known, however, due to the observation of non-extremely
distant objects. They thus interpolate the empirical linear law u=H0d

∗In observational astronomy, the luminosity distance dL to a cosmic object is
determined through the absolute stellar magnitude M of the object, and its appar-
ent stellar magnitude m according to the formula M=m− 5(lg dL − 1), where dL is
measured in parsecs. 1 parsec=3.0857×1018 cm≃ 3.1×1018 cm.
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upto the event horizon. Since the scattering velocity u should reach the
velocity of light (u= c) at the event horizon (d= dmax), they then ob-
tain dmax =

c
H0

=(1.3± 0.2)×1028 cm. Finally, they identify the linear
coefficient H0 of the empirical law for scattering galaxies as the world-
constant A= Ṙ

R
, which follows from the space geometry. Thus they may

obtain dmax =Rmax and, from the linear redshift law, the ultimately
high redshift zmax =H0

dmax

c =1. How, then, to explain the very distant
objects, whose redshift is much higher than z=1?

On the other hand, it is obvious that the ultimately high redshift
zmax, ensuing from the space (space-time) geometry, should be a result
of relativistic physics. In other words, z= zmax should follow not from a
straight line z= Ṙ

R
d
c
=H0

d
c =

u
c , which digs in the vertical “wall” u= c,

but from a non-linear relativistic function.
In this case, the Hubble constant H0 remains a linear coefficient in

only the pseudo-linear beginning of the real redshift law arc, wherein
the velocities of scattering u are small in comparison with the velocity of
light. At velocities of scattering close to the velocity of light (close to the
event horizon), the Hubble constant H0 loses the meaning of the linear
coefficient and the world-constant A due to the increasing non-linearity
of the real redshift law.

Such a non-linear formula has been found in the framework of our
theory presented here. This is the exponential redshift law (8.25), which
then gives the Lemaître linear redshift law (8.26) as an approximation
at small distances.

We now use the exponential redshift law (8.25). We calculate the ul-
timately high redshift zmax, which could be conceivable in an expanding
Friedmann space of the constant-deformation type. The event horizon
d= dmax is determined by the world-constant A= Ṙ

R
of such a space.

Thus, the ultimately large curvature radius is Rmax =
c
A

, while the dis-
tance corresponding to Rmax on the hypersurface is dmax =πRmax

πc
A

.
Suppose now that a photon has arrived from a source, which is located
at the event horizon. According to the obtained exponential solution
(8.21), the photon’s frequency at the arrival should be

ωmax = e
− Ṙ

R

dmax

c = ω0 e
−π ≃ 0.043ω0 , (8.28)

while the exponential redshift law (8.25) gives the photon’s redshift

zmax = e
Ṙ

R

dmax

c − 1 = eπ − 1 = 22.14 , (8.29)

which is the ultimately high redshift in such a universe.
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So, the redshift law for scattering galaxies, including its non-linear
increase at “cosmologically large” distances, has been explained in the
expanding constant-deformation (homotachydioncotic) space, which is
an accelerate expanding Friedmann universe.

The deduced exponential law points out the ultimately high redshift
zmax =22.14 for the objects located at the event horizon. The highest
redshifted objects, registered by the astronomers, are now the galaxies
UDFj-39546284 (z=10.3) and UDFy-38135539 (z=8.55). According
to the theory, they are still distantly located from the “world end”. We
therefore shall expect, with years of further astronomical observation,
more “high redshifted surprises” which will approach the upper limit
zmax =22.14 predicted by our theory.

§9. A note on the cosmological mass-defect in a Friedmann
universe. In §9 of the previous publication [1], I suggested solving
the scalar geodesic equation of mass-bearing particles in a Friedmann
universe. This equation being in its general form

dm

dτ
+

m

c2
D11v

1v1 = 0 , (9.1)

is non-resolvable. This is because mass-bearing particles can travel at
any sub-light velocity, which is therefore an unknown term of the equa-
tion∗. I then looked for the velocity by solving the vectorial geodesic
equation of mass-bearing particles. As a result, I arrived at a non-
resolvable integral equation. Even qualitative analysis of the integral
did not give a definite conclusion.

I now understand my mistake in that way of deduction. I targeted
that problem in its general form. However, now I see that the problem
can easily be removed in a constant-deformation Friedmann universe,
where massive bodies (mass-bearing particles) travel not arbitrarily, but
are only carried out with the expanding (or compressing) Friedmann
space itself. In this particular case, the linear velocity of a mass-bearing
particle is the same as the speed Ṙ at which the curvature radius R of the
space changes with time, v= Ṙ. In other words, because v2 =hik v

ivk,
we have hik v

ivk = Ṙ2. In this particular case (and with dτ = dt accord-
ing to Friedmann’s metric), the scalar geodesic equation of mass-bearing
particles (9.1) takes the form

h11
dm

dt
+

m

c2
D11 Ṙ

2 = 0 , (9.2)

∗Massless particles travel at the velocity of light vi = ci, so we have not this
problem when considering the geodesic equations of massless particles.
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which is h11
dm
m =− Ṙ2

c2
D11dt, and, finally,

R2

1− κr2
d lnm = − Ṙ2

c2
D11dt . (9.3)

Then, substituting R= a0e
At and Ṙ= a0AeAt (8.16), and also D11 =

= RṘ
1−κr2

=
a2
0Ae2At

1−κr2
(8.18) as for a constant-deformation space, we ob-

tain the scalar geodesic equation in the form

d lnm = − a20A
3e2At

c2
dt , (9.4)

or d lnm=− a2
0A

2

2c2
de2At, where A= Ṙ

R
is a constant of the space.

Note that the curvature factor κ comes out from the obtained equa-
tion. Therefore, the further solution of the equation will be common
for all three types of the constant-deformation (homotachydiastolic)
Friedmann universe: the hyperbolic (κ=−1), flat (κ=0), and elliptic
(κ=+1) space.

This equation solves, obviously, as lnm=− a2
0A

2

2c2
e2At + lnB, where

the integration constant B can be found from the condition m=m0 at
the initial moment of time t= t0 =0. Thus, after some trivial algebra,
we obtain the final solution of the scalar geodesic equation (9.4). It is
the double-exponent

m = m0 e
− a2

0A2

2c2
(e2At − 1)

, (9.5)

where t is the duration of the expansion (if A> 0) or compression (A< 0)
of the Friedmann universe. At small distances (and durations of time),
this solution takes the linearized form

m ≃ m0

(
1− a20A

3t

c2

)
. (9.6)

The obtained exact solution (9.5) and its linearized form (9.6) mani-
fest the cosmological mass-defect in a constant-deformation (homotachy-
diastolic) Friedmann universe: the more distant an object we observe
in an expanding Friedmann universe is, the less should be its observed
mass m to its real mass m0. Contrarily, the more distant an object we
observe in a compressing Friedmann universe is, the heavier should be
this object according to the observation.

Our Universe seems to be expanding. This is due to the cosmological
redshift registered in the distant galaxies and quasars. Therefore, ac-
cording to the cosmological mass-defect deduced here, we should expect
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distantly located cosmic objects to be much heavier than we estimate on
the basis of astronomical observations. The magnitude of the expected
mass-defect should be, according to the obtained solutions, in the order
of the redshift of the objects.

The cosmological mass-defect complies with the respective solution
obtained for the frequency of a photon. Both effects are deduced in the
same way, by solving the scalar geodesic equation for mass-bearing and
massless particles, respectively. One effect cannot be in the absence of
the other, because the geodesic equations have the same form. This is
a basis of the space (space-time) geometry, in other words. Therefore,
once the astronomers register the linear redshift law and its non-linearity
in the very distant galaxies and quasars, they should also find the corre-
sponding cosmological mass-defect according to the solutions outlined
here. Once the cosmological mass-defect is discovered, we will be able
to say, surely, that our Universe as a whole is an expanding Friedmann
universe of the constant-deformation (homotachydiastolic) type.

Submitted on December 24, 2011
Corrected on January 24, 2024

P.S. A thesis of this presentation has been posted on the desk of the April Meeting
2012 of the APS, planned for March 31 – April 03, 2012, in Atlanta, Georgia. More
detailed explanation of the cosmological redshift and the cosmological mass defect,
surveyed briefly in my recent papers, will be considered in my forthcoming book
(under preparation).
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Gravitational Fields Exterior

to Homogeneous Spheroidal Masses

Ebenezer Ndikilar Chifu∗

Abstract: General relativistic mechanics in gravitational fields ex-
terior to homogeneous spheroidal masses is developed using our new
approach. Einstein’s field equations in the gravitational field exterior
to a static homogeneous prolate spheroid are derived and a solution
for the first field equations constructed. Our derived field equations
exterior to the mass distribution have only one unknown function
determined by the mass or pressure distribution. The obtained solu-
tions yield the unknown function as generalizations of Newton’s grav-
itational scalar potential. Remarkably, our solution puts Einstein’s
geometrical theory of gravity on same footing with Newton’s dynam-
ical theory; with the dependence of the field on one and only one
unknown function comparable to Newton’s gravitational scalar poten-
tial. The consequences of the homogeneous spheroidal gravitational
field on the motion of test particles have been theoretically investi-
gated. The effect of the oblate nature of the Sun and planets on some
gravitational phenomena has been examined. These are gravitational
time dilation, gravitational length contraction and gravitational spec-
tral shift of light. Our obtained theoretical value for the Pound-Rebka
experiment on gravitational spectra shift (2.578×10−15) agrees sat-
isfactorily with the experimental value of 2.45×10−15. Expressions
for the conservation of energy and angular momentum are obtained.
Planetary equations of motion and equations of motion of photons
in the vicinity of spheroids are derived; having additional spheroidal
terms not found in Schwarzschild’s space-time.
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Chapter 1. Introduction

§1.1. Background of the problem

§1.1.1 The nature of gravitation

General Relativity is the geometrical theory of gravitation published
by Albert Einstein in 1915/1916. It unifies Special Relativity and Sir
Isaac Newton’s law of universal gravitation with the insight that gravi-
tation is not due to a force but rather a manifestation of curved space
and time, with the curvature being produced by the mass-energy and
momentum content of the space-time. General Relativity is the most
widely accepted theory of gravitation.

After his theory of Special Relativity which elegantly describes me-
chanics in electromagnetic and empty spaces, Einstein expected gravita-
tion to have the same nature as electromagnetism and hence fit into Spe-
cial Relativity. So Einstein sought a “Maxwellian” type of laws for the
gravitational field. That effort by Einstein failed [1]. Einstein concluded
that gravitation is of an entirely different nature from electromagnetism
which is a dynamical phenomenon. Consequently, he used geometrical
quantities (tensors) for the description of gravitation instead of the dy-
namical quantities such as force and potential. Secondly, Einstein re-
alized that Newton’s laws of gravitation satisfied Galileo’s principle of
relativity according to which the laws of physics take the same form in
all inertial reference frames. Consequently, Einstein also introduced his
principle of General Relativity which asserts that “The laws of physics
take the same form in all reference frames” Thus, Einstein constructed
his theory of gravitation founded on his principle of General Relativity
using tensors [1].

§1.1.2. The space-time of General Relativity

In Special Relativity, space-time has four dimensions (µ = 0, 1, 2, 3) and
there always exist a global coordinate system in which the world-line
element or proper time takes the form

c2dτ2 = ηµσ dx
µdxσ , (1.1)

where ηµσ is a special relativistic metric tensor given by η00 =1, η11 =
= η22 = η33 =−1 (ηµσ =0, µ 6= σ). Such a coordinate system is said to
be Cartesian. In a non-Cartesian coordinate system such as a spherical
or spheroidal coordinates, the world-line element of space-time may be
written as [2],

c2dτ2 = gµσ dx
µdxσ , (1.2)
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where gµσ is the corresponding metric tensor which is generally different
from the Cartesian metric tensor ηµσ . In practical calculations, the
metric is most often written in coordinates in which it takes the following
form

ds2 = gµν dx
µdxν . (1.3)

According to the philosophy of General Relativity (GR), the effect
of gravitation is contained in the metric tensor field gµσ. Thus, in
Einstein’s theory of gravity, the gravitational field is promoted to a
space-time metric gµσ.

Schwarzschild in 1916 constructed the first exact solution of Ein-
stein’s gravitational field equations. Schwarzschild’s solution is one of
the physically interpretable solutions of Einstein’s field equations [3].
Schwarzschild metric tensor field is that due to a static spherically
symmetric body situated in empty space such as the Sun or a star.
Schwarzschild metric has been the basis of theoretical investigations of
gravitational phenomena in Einstein’s theory of gravitation. This is in
spite of the fact that the Sun and most planetary bodies in the Solar
System are not perfectly spherical but oblate spheroidal in shape [4].

§1.2. Statement of the problem

From the inception of Newton’s dynamical theory of gravitation in the
17th century, the planets and Sun have been treated as perfectly spher-
ical bodies. For example in the motion of terrestrial penduli, projectiles
and satellites, the Earth is regarded as perfectly spherical in geometry.
Similarly in the motions of the planets, comets and asteroids in the So-
lar System, the Sun is regarded as perfectly spherical in geometry and
also, in Einstein’s geometrical theory of gravitation (General Relativ-
ity). The motions of the planets and photons in the Solar System are
treated under the assumption that the Sun is a perfect sphere. It has
however, been realized experimentally that the Sun and planets in the
Solar System are more precisely oblate spheroidal in geometry [4] (see
Table 1 below).

Obviously, the oblate spheroidal geometries of these bodies (Table 1)
has corresponding effects on their gravitational fields and hence the
motions of test particles in these fields. Towards the investigation of
these effects in Newton’s theory of gravitation; the gravitational scalar
potential due to an oblate spheroidal body and Newton’s equations of
motion in the gravitational field of an oblate mass have been derived [4].

The prolate spheroid is the shape of some moons in the Solar System.
Examples are Mimas, Enceladus, and Tethys (moons of Saturn) and



Ebenezer Ndikilar Chifu 35

Body Oblateness

Sun 9×10−6

Mercury 0
Venus 0
Earth 0.0034
Mars 0.006
Jupiter 0.065
Saturn 0.108
Uranus 0.03
Neptune 0.026

Table 1: Oblateness of bodies in the Solar System.

Miranda (moon of Uranus). The prolate spheroidal geometry is also
used to describe the shape of some nebulae (a nebula is a region or
cloud of interstellar dust and gas appearing variously as a hazy bright
or dark patch) such as the Crab Nebula [5]. Also, the existence of
rotating prolate spheroidal galaxies has been known for decades, yet, a
theoretical model based on Newton’s or Einstein’s gravitational theories
remains elusive [6].

The metric tensor for a gravitational field is the fundamental start-
ing point in the studies of gravitational fields in Einstein’s geometrical
theory. With the metric tensor, Einstein’s field equations can be de-
rived and solved. There is no general method yet of finding rigorous
solutions of Einstein’s field equations [1]. In order to study general rela-
tivistic mechanics (Einstein’s theory of gravitation) in oblate spheroidal
gravitational fields, Howusu and Uduh [7] sought the covariant metric
tensor exterior or interior to a massive oblate spheroidal body in oblate
spheroidal coordinates as;

g00 = e−F , (1.4)

g11 = − e−G, (1.5)

g22 = − e−H , (1.6)

g33 = − a2
(
1− η2

) (
1 + ζ2

)
, (1.7)

gµν = 0 , (1.8)

where F , G and H are functions of η and ζ only and a is a constant
parameter. With this metric, they constructed gravitational field equa-
tions exterior or interior to a massive oblate spheroidal body. The field
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equations they obtained are non linear second order differential equa-
tions and have three unknown functions. The major setback of the use
of this metric, equations is that the introduction of three unknown func-
tions, F , G and H makes the field equations obtained very complex and
this compounds with the non linearity of the field equations to make
them almost practically unsolvable and physically uninteresting.

Howusu [8] in an attempt to address the loop holes, difficulties and
shortcomings in their previous approach, realized that a general and
standard metric tensor exterior to all distributions of mass or pressure
within regions of all regular geometries can be obtained by extending
the Schwarzschild’s metric to the particular regular geometry. The most
interesting and important fact about this new method is that the gen-
eralized metric tensor obtained is not an exponential function and has
only one unknown function. It is also instructive to note that the un-
known function in this case can be satisfactorily approximated to the
Newtonian gravitational scalar potential exterior to the astrophysical
body under consideration and hence makes physical interpretations sim-
pler. This new approach is thus computationally less cumbersome and
physically more applicable in principle than the previous approach.

This work examines the effect of the oblate spheroidal nature of the
Sun and planets on some gravitational phenomena using this new ap-
proach. The motion of planets and photons in the Solar System are
also investigated. These effects include gravitational spectral shift of
light, gravitational length contraction and gravitational time dilation.
We equally construct the generalized Lagrangian for this field and use it
to study orbits in homogeneous oblate spheroidal space-time [9–11]. In
this research work, we also start the study of static homogeneous prolate
spheroidal gravitational fields using this new approach. Einstein‘s grav-
itational field equations exterior to static homogenous prolate spheroids
are derived. Solutions to the derived field equations are also constructed
and the consequences of the field on the motion of test particles are also
investigated [12, 13].

§1.3. Objectives of the study

• Derivation of Einstein’s gravitational field equations exterior to
static homogeneous (time independent) prolate spheroidal distri-
butions of mass as an extension of Schwarzschild’s metric (that is
using the new approach);

• Solutions to field equations derived and consequences to the mo-
tion of test particles;
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• Derivation of the planetary equation of motion and the equation
for the deflection of light in the gravitational field exterior to ho-
mogenous (time independent) spheroids (prolate and oblate);

• Investigation of the effect of the oblate spheroidal nature of the
Sun and planets on some gravitational phenomena (gravitational
length contraction, gravitational time dilation and gravitational
spectral shift of light) using the new approach.

§1.4. Scope of the study

The philosophy of General Relativity describes gravitation as a geo-
metrical phenomenon with the effect of gravitation contained in the
covariant metric tensor for a gravitational field [14]. The metric tensor
exterior to all possible distributions of mass within oblate spheroidal
and prolate spheroidal geometries given by Howusu [8] is made explicit
and used to study these gravitational fields. Our knowledge of orthogo-
nal curvilinear coordinates, tensor analysis, Schwarzschild gravitational
field and general relativistic mechanics is used to achieve the objectives.

Basically, we concentrate on gravitational sources with time indepen-
dent and axially-symmetric distributions of mass within spheroids, char-
acterized by at most two typical integrals of geodesic motion, namely,
energy and angular momentum. From an astrophysical point of view,
such an assumption, although not necessary, could, however, prove use-
ful, because it is equivalent to the assumption that the gravitational
source is changing slowly in time so that partial time derivatives are
negligible compared to the spatial ones. We stress that the mass source
considered is not the most arbitrary one from a theoretical point of
view, but on the other hand, many astrophysically interesting systems
are usually assumed to be time independent (or static from another
point of view) and axially symmetric continuous sources [15].

§1.5. Significance of the study

Gravity is the least understood of all the fundamental forces in nature;
but mass and space, which are governed by gravity, are the building
blocks and fabric of our universe. General Relativity is the most fun-
damental theorem of physics about the nature of gravity. If we better
understand the nature of mass and space, we may be able to do things
previously undreamed of. So far studies of General Relativity have
yielded atomic clocks, guidance systems for spacecrafts and the Global
Positioning Systems (GPS). We cannot foresee all that can come from
a better understanding of space-time and mass-energy, but a theorem
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about these fundamental subjects must be thoroughly examined if we
are to use it to our advantage [16]. This research work is a step in this
direction.

This research work substantially extends Einstein’s theory of grav-
itation (General Relativity) from the well known Schwarzschild space-
time to the experimentally more precise oblate and prolate spheroidal
space-times in the universe. Thus, the theoretical analysis of the motion
of particles of non-zero rest masses, gravitational length contraction,
gravitational time dilation and gravitational spectral shift is extended
from the gravitational field exterior to a spherical mass to the gravita-
tional field exterior to spheroidal masses. Our approach in this research
work unlike in earlier attempts makes it possible for us to obtain phys-
ically interpretable theoretical values for the above listed gravitational
phenomena in approximate gravitational fields exterior to bodies in the
Solar System. Our newly obtained expression for gravitational time di-
lation can now be incorporated into the contribution of gravitation in
the design of Global Positioning System (GPS). It is hoped that when
this is done, the precision rate of GPS will be greatly improved. This
work also opens the door for the theoretical investigation of the contri-
butions of the oblateness of the Sun and planets on other gravitational
phenomena such as geodetic deviation, radar sounding and anomalous
orbital precession, using this new approach. An insight is also provided
for the theoretical investigation of the contributions of the oblateness
and prolateness of some astronomical bodies on gravitational phenom-
ena. It is thus eminent that this work will serve as an eye opener for
the verification of small departures of theory from reality in astronomy
in the near future.

Chapter 2. Methodology

§2.1. General relativistic mechanics in Schwarzschild’s field

§2.1.1. Einstein’s gravitational field equations

It is well known that Einstein’s gravitational field equations are tenso-
rially given as [1]

Gµν = −8πG

c4
Tµν , (2.1)

where Gµν is the Einstein tensor constructed from the metric tensor gµν
of the space-time; c is the speed of light in vacuum, G is the universal
gravitational constant and Tµν is the stress tensor which is the source of
the gravitational metric field. There are actually ten independent scalar
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equations in (2.1) because of the symmetry of the tensors involved in
the field equations. These equations are actually second order partial
differential equations and are generally non-linear.

§2.1.2. Schwarzschild’s metric

If one considers a spherical body of radius R0 and total rest mass M
distributed uniformly with density ρ0, then the general relativistic field
equations in its exterior region are given tensorially as [1]

Gµν = 0 . (2.2)

Thus, Einstein’s equations (2.2) give ten different differential equa-
tions with zero elements on the right-hand-side. Schwarzschild in 1916
constructed the first exact solution of Einstein’s gravitational field equa-
tions. It was the metric due to a static spherically symmetric body
situated in empty space such as the Sun or a star [1]. The result is as
follows

g00 = 1 +
2f(r)

c2
, (2.3)

g11 = −
(
1 +

2f(r)

c2

)−1

, (2.4)

g22 = −r2, (2.5)

g33 = −r2 sin2 θ , (2.6)

where f(r) is an arbitrary function determined by the distribution. It
is a function of the radial coordinate r only; since the distribution and
hence its exterior gravitational field posses spherical symmetry. From
the condition that these metric components should reduce to the field
of a point mass located at the origin and contain Newton’s equations
of motion in the gravitational field of the spherical body, it follows
that f(r) is the Newtonian gravitational scalar potential in the exterior
region of the body [17].

§2.1.3. Schwarzschild’s singularity

The world-line element in Schwarzschild field is given by [8]

c2dτ2 = c2
(
1 +

2f(r)

c2

)
dt2 −

(
1 +

2f(r)

c2

)−1

dr2 −

− r2dθ2 − r2 sin2θ dφ2. (2.7)
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In this field

f(r) = −GM
r

, r > R0 . (2.8)

It has been known since 1916 that it is possible for a spherical body
to have a point outside it at which the Schwarzschild metric has a singu-
larity. This singularity is denoted by rs and is called the Schwarzschild
singularity. It is given by the condition

1− 2GM

c2rs
= 0 ,

thus,

rs =
2GM

c2
. (2.9)

For the Earth, rs =0.89 cm. This radius lies in the interior of the
Earth where the metric is precisely the interior metric and hence the
exterior metric is not applicable. For most physical bodies in the uni-
verse, the Schwarzschild radius is much smaller than the radius of their
surface. Hence for most bodies, there does not exist a Schwarzschild
singularity. It is however, speculated that there exist some bodies in
the universe with the Schwarzschild radius in the exterior region. Such
bodies are called black holes.

§2.1.4. Gravitational length contraction in Schwarzschild field

In Schwarzschild field, the space part of the metric is given by

ds2 =

(
1− 2GM

c2r

)
dr2 + r2dθ2 + r2 sin2θ dφ2. (2.10)

Thus, in the neighborhood of a massive body, two points of the
same angle θ and φ now have a separation which is different from the
corresponding separation in empty space. That is

ds =

(
1− 2GM

c2r

)−1/2

dr ∼=
(
1 +

GM

c2r
+ · · ·

)
dr . (2.11)

This equation implies that ds>dr. In other words r is no longer
the measure of radial distances. Also, it follows that the length of
physical bodies is not conserved in a gravitational field. That is, length
is contracted in a gravitational field. This is the phenomenon of length
contraction. It is highly speculated that not only are material objects
(such as meter rules) contracted by gravitational fields but also space
itself is contracted by gravitational fields [2].
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§2.1.5. Gravitational time dilation in the spherical field

Consider, a clock at rest at a fixed point in Schwarzschild gravitational
field around a spherical body, then dr= dθ= dφ=0 and hence Schwarz-
schild’s world line element, reduces to

dt =

(
1− 2GM

c2r

)−1/2

dτ ∼=
(
1 +

GM

c2r
+ · · ·

)
dτ . (2.12)

It can be deduced that dt>dτ and therefore, the coordinate time of
a clock in the gravitational field is dilated relative to the proper time.

§2.1.6. Motion of particles of non-zero rest masses in Schwarz-
schild field

A test mass is one which is so small that the gravitational field pro-
duced by it is so negligible that it does not have any effect on the space
metric. A test mass is a continuous body, which is approximated by its
geometrical centre; it has nothing in common with a point mass whose
density should obviously be infinite [1].

The general relativistic equation of motion for particles of non-zero
rest masses in a gravitational field are given by

d2xµ

dτ2
+ Γµ

νλ

dxν

dτ

dx2

dτ
= 0 , (2.13)

where Γµ
νλ are the coefficients of affine connection for the gravitational

field. For Schwarzschild field, the equations of motion are

ẗ+
k

c2r2
(
1− 2k

c2r

) ṫ ṙ = 0 , (2.14)

θ̈ +
2

r
ṙ θ̇ − sin θ cosϑφ̇2 = 0 , (2.15)

φ̈+
2

r
ṙ φ̇+ 2 cot θ θ̇ φ̇2 = 0 , (2.16)

r̈ +
1

2
c2f1 (1 + f) ṫ2 − 1

2
f1 (1 + f)

−1
ṙ2 −

− r (1 + f) θ̇2 − r (1 + f) sin2 θ φ̇2 = 0 , (2.17)

where the dot denotes differentiation with respect to proper time,
k≡GM , f ≡− 2k

c2r
and f1≡ df

dr [1].
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§2.2 General relativistic mechanics in static homogeneous
spheroidal fields

§2.2.1. Oblate and prolate spheroidal coordinate systems

The oblate spheroidal coordinates are related to the Cartesian coordi-
nates by

x = a coshu cos v cosφ

y = a coshu cos v sinφ

z = a sinhu sin v





, (2.18)

where u> 0, 06 v6π and 06φ6 2π.
It is convenient to use the following transformations to eliminate the

hyperbolic functions and ease computation with this coordinate system;
ξ= sinhu, η= sin v and thus, the relation between Cartesian and oblate
spheroidal coordinate systems can be written as [18]

x = a
(
1− η2

)1/2 (
1 + ξ2

)1/2
cosφ

y = a
(
1− η2

)1/2 (
1 + ξ2

)1/2
sinφ

z = aηξ





, (2.19)

where 06 ξ <∞, −16 η6 1, 06φ6 2π and a is a constant parameter.
For a prolate spheroid unlike an oblate spheroid, the polar diameter

is longer than the equatorial diameter. The derivation of the prolate
spheroidal coordinate system is quite similar to the above derivation
of the oblate spheroidal coordinate system. The relation between the
Cartesian and prolate spheroidal coordinate systems is [18]

x = a
(
1− η2

)1/2 (
1 + ξ2

)1/2
cosφ

y = a
(
1− η2

)1/2 (
1 + ξ2

)1/2
sinφ

z = aηξ





, (2.20)

where 06 ξ <∞, −16 η6 1 and 06φ6 2π.

§2.2.2. Metric tensor exterior to an oblate spheroid and
a prolate spheroid

The invariant world line element in the exterior region of a static spher-
ical body is given generally according to [8], where f(r, θ, φ) is a gen-
eralized arbitrary function determined by the distribution of mass or
pressure and possess all the symmetries of the mass distribution. Thus,
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according to [8], the invariant world line element is

c2dτ2 = c2
(
1 +

2f(r, θ, φ)

c2

)
dt2 −

−
(
1 +

2f(r, θ, φ)

c2

)−1

dr2 − r2 sin2θ dφ2. (2.21)

It is a well known fact of General Relativity that f(r, θ, φ) is approxi-
mately equal to Newton’s gravitational scalar potential in the space-time
exterior to the mass or pressure distributions within spherical geometry.

Now, let the spherical body be transformed, by deformation, into
an oblate spheroidal body in such a way that its density ρ0 and total
mass M remain the same and its surface parameter is given in oblate
spheroidal coordinates as

ξ = ξ0 = constant. (2.22)

Then, the general relativistic field equations exterior to an oblate
spheroidal body are mathematically equivalent to those of the spheri-
cal body. This is because they are both tensorially the same. Hence,
they are only related by the transformation from spherical to oblate
spheroidal coordinates. Therefore, to get the corresponding invariant
world line element in the exterior region of an oblate spheroidal mass
one could do the following:

1) Replace f(r, θ, φ) by the corresponding function f(η, ξ, φ) exterior
to oblate spheroidal bodies. Thus, a sound and astrophysically
satisfactory approximate expression for the function f(η, ξ, φ) is
obtained by equating it to the gravitational scalar potential exte-
rior to the distribution of mass within oblate spheroidal regions [8];

2) Transform coordinates from spherical to oblate spheroidal

(ct, r, θ, φ) → (ct, η, ξ, φ) (2.23)

on the right hand side of equation (2.7). The following components
of the metric tensor in the region exterior to a homogeneous oblate
spheroid in oblate spheroidal coordinates are obtained

g00 =

(
1 +

2

c2
f(η, ξ)

)
, (2.24)

g11 = − a2

1 + ξ2 − η2

[
η2
(
1 +

2

c2
f(η, ξ)

)−1

+
ξ2
(
1 + ξ2

)

(1− η2)

]
, (2.25)
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g12 = g21 = − a2ηξ

1 + ξ2 − η2

[
1−

(
1 +

2

c2
f(η, ξ)

)−1
]
, (2.26)

g22 = − a2

1 + ξ2 − η2

[
ξ2
(
1 +

2

c2
f(η, ξ)

)−1

+
η2
(
1− η2

)

(1 + ξ2)

]
, (2.27)

g33 = −a2
(
1 + ξ2

) (
1− η2

)
. (2.28)

It may be of interest to note that this metric tensor field unlike the
metric tensor field used by Howusu and Uduh [7] contains only one
unknown function, f(η, ξ) determined by the mass distribution and has
no exponential components.

The covariant metric tensor obtained above for gravitational fields
exterior to oblate spheroidal masses has two additional non-zero compo-
nents g12 and g21 not found in Schwarzschild field and the metric used
by Howusu and Uduh [7]. Thus, the extension from Schwarzschild field
to homogeneous oblate spheroidal gravitational fields has produced two
additional non zero tensor components and thus this metric tensor field
is unique. This confirms the assertion that oblate spheroidal gravita-
tional fields are more complex than spherical fields and hence general
relativistic mechanics in this field is more involved. This partly accounts
for the scanty research carried out on this gravitational field.

Similarly, it has been shown [8] that the covariant metric tensor
exterior to static homogeneous prolate spheroidal distributions of mass
is given as

g00 =

(
1 +

2

c2
f(η, ξ)

)
, (2.29)

g11 = − a2η2

η2 + ξ2 − 1

[(
1 +

2

c2
f(η, ξ)

)−1

+
ξ2
(
1− ξ2

)

η2 (η2 − 1)

]
, (2.30)

g12 = g21 = − a2ηξ

η2 + ξ2 − 1

[
− 1 +

(
1 +

2

c2
f(η, ξ)

)−1
]
, (2.31)

g22 = − a2ξ2

η2 + ξ2 − 1

[(
1 +

2

c2
f(η, ξ)

)−1

+
η2
(
η2 − 1

)

ξ2 (1− ξ2)

]
, (2.32)

g33 = −a2
(
1− ξ2

) (
η2 − 1

)
. (2.33)

This metric tensor has the same number of non-zero components
(six) as the metric exterior to an oblate spheroid. As has been noted in
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the case of oblate spheroids, f(η, ξ) is an arbitrary function determined
by the mass or pressure and hence it possesses all the symmetries of
the latter, a priori. Herein, f(η, ξ) can be conveniently approximated to
be equal to Newton’s gravitational scalar potential exterior to the mass
distribution.

The metric tensors by virtue of their construction satisfy the first
and second postulates of General Relativity. There are invariance of the
line element; and Einstein’s gravitational field equations [8].

§2.2.3. Gravitational field equations exterior to static homo-
geneous prolate spheroids

To obtain the contravariant metric tensor for the gravitational field
exterior to a prolate spheroid, gµν we use the fact that gµν is the cofactor
of gµν in g divided by g [18]. That is

gµν =
cofactor of gµν in g

g
, (2.34)

where

g = det

∥∥∥∥∥∥∥∥

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

∥∥∥∥∥∥∥∥
. (2.35)

The coefficients of affine connection Γσ
µσ for any gravitational field

are defined in terms of the covariant and contravariant metric tensor of
space-time as [18]

Γσ
µν =

1

2
gσv
(
gµν, λ + gvλ, µ − gµλ, v

)
, (2.36)

where the comma denotes partial differentiation with respect to λ, µ
and v. In this research work, we have constructed the 64 coefficients of
affine connection for this gravitational field.

The curvature tensor or the Riemann-Christoffel tensor Rδ
αβσ for

this field is defined in terms of the coefficients of affine connection as

Rδ
αβσ = Γδ

ασ, χ − Γδ
αβ, σ + Γε

ασΓ
δ
εβ − Γε

αβΓ
δ
εσ , (2.37)

where the comma denotes partial differentiation with respect to β and σ.
This research work has equally constructed the 256 components of this
tensor for homogeneous prolate spheroidal gravitational fields. From
the curvature tensor Rδ

αβσ for this gravitational field, we have defined
a second rank tensor Rαβ (called the Ricci tensor) for the gravitational
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field exterior to the prolate spheroid as

Rαβ = Rδ
αβδ . (2.38)

The 16 components of this tensor for the static homogeneous pro-
late spheroids have been constructed. From the Ricci tensor for our
gravitational field, we deduced a scalar R defined by

R = Rα
α = gαβRαβ (2.39)

called the curvature scalar for homogeneous spheroidal fields.
It is well known that for a region exterior to any astrophysical body,

the general relativistic field equations are given tensorially as

Gµν = 0 , (2.40)

where Gµν is the Einstein tensor, given explicitly as

Gµν = Rµν − 1

2
Rgµν , (2.41)

where Rµν is the Ricci tensor, R the curvature scalar and Gµν the
covariant metric tensor for the field. The Einstein field equations for
the gravitational field exterior to homogeneous prolate spheroids are
then built up.

These are partial differential equations with only one unknown. We
constructed the solution to the first field equation using our knowledge
of partial differential equations and path integral methods.

§2.2.4. Motion of test particles exterior to static homogeneous
prolate spheroidal masses

The general relativistic equation of motion and the coefficients of affine
connection for our field are used to study the motion of particles of
non-zero rest masses in this field. Einstein’s geometrical equations of
motion for test particles in the gravitational fields of prolate spheroidal
astronomical bodies are derived. These equations of motion have only
one unknown function. The solution of the first field equation is then
used to study the effect of the gravitational field on the motion of test
particles.

§2.2.5. Planetary motion and motion of photons in spheroidal
gravitational fields

In General Relativity, the change in energy of a freely moving pho-
ton is given by the scalar equation of the isotropic geodesic equations,
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which manifest on the work produced on a photon being moved along
a path [19]. Here, we use the generalized Lagrangian exterior to static
homogenous oblate and prolate spheroids to study orbits in this gravi-
tational field and obtain expressions for the conservation of total energy
and angular momentum in this field. The planetary equation of motion
and the equation for the deflection of light (photons) in the gravitational
field exterior to homogeneous oblate and prolate spheroidal bodies are
derived.

§2.2.6. Effects of oblateness of the Sun and planets on some
gravitational phenomena

Gravitational time dilation. In this research work, we show that
our theoretical extension of Schwarzschild’s gravitational field to oblate
spheroidal fields conform satisfactorily to the above proven experimental
and astrophysical facts. We consider a clock at rest in this gravitational
field such that dξ= dη= dφ=0. The world line element for the gravi-
tational field exterior to an oblate spheroidal mass is then used to give
a new expression for time dilation. We then use our new expression
to calculate the dilated coordinate time as a function of proper time
along the equator and pole of various bodies in the Solar System in
approximate homogeneous gravitational fields. This has not been done
in previous theoretical approaches to the subject.

Gravitational length contraction. In this research work, the space
part of the world line element in the gravitational field exterior to
an oblate spheroidal mass is used with the angular coordinates kept
constant. This gives us a new expression for gravitational length con-
traction. As an illustration of this gravitational phenomenon in oblate
spheroidal gravitational fields, we consider a long stick lying “radially”
along the equator in the approximate gravitational field of a static ho-
mogenous oblate spheroidal mass such as the Earth and we let the ξ-
coordinates of the ends be ξ1 and ξ2, where ξ2>ξ1. With this, we find
the expression for its proper length and deduce that the length is re-
duced in the gravitational field. This computation affirms the soundness
of our extension and confirms the assertion from Schwarzschild’s metric
that not only is length contracted in gravitational fields but space also.

Gravitational spectral shift of light. We consider a beam of light
(photons) moving from a source or emitter at a fixed point in the grav-
itational field of the oblate spheroidal body to an observer or receiver
at a fixed point in the same gravitational field. Einstein’s equation of
motion for a photon is used to derive an expression for the shift in
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frequency of a photon moving in the gravitational field of an oblate
spheroidal mass. We then as an illustration of the expression obtained,
consider a signal of light emitted and received along the equator of the
static homogenous oblate spheroidal Earth (in the approximate gravita-
tional field). The ratio of the shift in frequency to the frequency of the
emitted light at various points in the equatorial plane and received on
the equator at the surface of the static homogeneous oblate spheroidal
Earth is computed using our derived equation. Also, the ratio of the
shift in frequency of light to the frequency of the emitted light on the
equator at the surface and received at various points along the equator
of the static homogeneous oblate spheroidal Earth is also computed. It
is worth noting that we deliberately used emitters and receivers at rest
in this gravitational field to avoid shifts in frequency due to Doppler
effect. However, in more practical cases, the gravitational spectral shift
is always compounded with the special relativistic shift (Doppler shift).
This yields a general expression for the shift in frequency when there is
a relative motion between the emitter and receiver.

Chapter 3. Results and Discussion

§3.1. General relativistic mechanics in homogeneous oblate
spheroidal gravitational fields

§3.1.1. Motion of particles of non-zero rest masses in homo-
geneous oblate spheroidal space-time

The contravariant metric tensor gµν for this gravitational field is ob-
tained as

g00 =

(
1 +

2

c2
f(η, ξ)

)−1

, (3.1)

g11 = −

(
1− η2

)(
1 + ξ2 − η2

)
[
η2
(
1− η2

)
+

ξ2(1+ξ2)

1+
2

c2
f(η,ξ)

]

a2

1+
2

c2
f(η,ξ)

[
η2 (1− η2) + ξ2 (1 + ξ2)

]2 , (3.2)

g12 = g21 = − ηξ
(
1− η2

) (
1 + ξ2

) (
1 + ξ2 − η2

)

a2

1+
2

c2
f(η,ξ)

[
η2 (1− η2) + ξ2 (1 + ξ2)

]2 ×

×
[
1−

(
1 +

2

c2
f(η, ξ)

)−1
]
, (3.3)
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g22 = −

(
1 + ξ2

)(
1 + ξ2 − η2

)
[
ξ2
(
1 + ξ2

)
+

η2(1−η2)

1+
2

c2
f(η,ξ)

]

a2

1+
2

c2
f(η,ξ)

[
η2 (1− η2) + ξ2 (1 + ξ2)

]2 , (3.4)

g33 =
[
a2
(
1 + ξ2

) (
1− η2

) ]−1

. (3.5)

The contravariant metric tensor has two additional non-zero compo-
nents not found in Schwarzschild field. Notice that unlike in Schwarz-
schild field; where all the non-zero components of the contravariant ten-
sor are simply reciprocals of the covariant metric tensor; only equations
(3.1) and (3.5) are reciprocals of their respective covariant tensors. The
other non-zero components have a common denominator. The coeffi-
cients of affine connection found have fourteen non zero components.,
dependent on a single unknown function f . Schwarzschild’s connection
coefficients on the other hand have ten non-zero components dependent
on the gravitational scalar potential exterior to the spherically symmet-
ric mass [20].

Using the general relativistic equation of motion for test particles
and the coefficients of affine connection for the gravitational field exte-
rior to an oblate spheroidal mass the following equations of motion are
obtained. The time equation of motion is obtained as

d

dτ
(ln ṫ) +

d

dτ

[
ln
(
1 +

2

c2
f(η, ξ)

)]
= 0 (3.6)

with solution as

ṫ = A

(
1 +

2

c2
f(η, ξ)

)−1

. (3.7)

As t→ τ , f(η, ξ) → 0 and the constant A ≡ 1. Thus,

ṫ =

(
1 +

2

c2
f(η, ξ)

)−1

. (3.8)

Equation (3.8) is the expression for the variation of the time on a
clock moving in this gravitational field. It is of same form as that in
Schwarzschild’s gravitational field. Interestingly, our expression differs
greatly from that obtained by [21]. In his case, he obtains ṫ as an
exponential function dependent on his unknown function F (ξ). Thus,
our expression in its merit stands out uniquely, as an extension of the
results in Schwarzschild’s field. Also, it tends out most remarkably



50 The Abraham Zelmanov Journal — Vol. 5, 2012

that our unknown function can be evaluated from the gravitational field
equations.

The η equation of motion is

η̈ + Γ1
00 c

2 ṫ2 + Γ1
11 η̇

2 + Γ1
22 ξ̇

2 + Γ1
33 φ̇

2 + 2Γ1
12 η̇ ξ̇ = 0 . (3.9)

The ξ equation of motion is given as

ξ̈ + Γ1
00 c

2 ṫ2 + Γ1
11 η̇

2 + Γ1
22 ξ̇

2 + Γ1
33 φ̇

2 + 2Γ1
12 η̇ ξ̇ = 0 . (3.10)

The azimuthal equation of motion is obtained as

φ̇ =
l

(1− η2) (1 + ξ2)
, (3.11)

where l is a constant of motion. Herein l physically corresponds to the
angular momentum and hence equation (3.11) is the law of conservation
of angular momentum in this gravitational field. It does not depend
on the gravitational potential and is of same form as that obtained in
Schwarzschild’s and Newton’s dynamical theory of gravitation. It is
worth emphasizing that although the form is the same, it stands out
unique as the parameters are in oblate spheroidal coordinates.

§3.1.2. Planetary motion and motion of photons in the equa-
torial plane of homogeneous oblate spheroidal gravita-
tional fields

The Lagrangian, in the space-time exterior to an oblate spheroid can
be written explicitly in oblate spheroidal coordinates as

L =
1

c

[
− g00

(
dt

dτ

)2
− g11

(
dη

dτ

)2
− 2g12

(
dη

dτ

)(
dξ

dτ

)
−

− g22

(
dξ

dτ

)2
− g33

(
dφ

dτ

)2 ]1/2
. (3.12)

For orbits in the equatorial plane of a homogeneous oblate spheroidal
mass; η ≡ 0 and using the Lagrangian it is shown (using the fact that
the gravitational field is a conservative field) that the law of conservation
of energy in the equatorial plane of the gravitational field exterior to an
oblate spheroidal mass is

(
1 +

2

c2
f(ξ)

)
ṫ = k , k̇ = 0 , (3.13)

where k is a constant. Notice that this equation is exactly the same as
the expression obtained from the time equation of motion for test part-
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icles. This expression has never been obtained before. Thus, our use
of the metric tensor and Lagrangian mechanics in oblate spheroidal
gravitational field yields the first ever documented expression for the
conservation of energy in this field [9].

Also, the law of conservation of angular momentum in the equatorial
plane of the gravitational field exterior to an oblate spheroidal body is
obtained as (

1 + ξ2
)
φ̇ = l , l̇ = 0 , (3.14)

where l is a constant. It is interesting and instructive to note that this
expression is equivalent to that obtained from the general relativistic
azimuthal equation of motion for test particles in the gravitational field
exterior to an oblate spheroidal mass. Thus our method for obtaining
the laws of conservation of total energy and angular momentum in this
section is mathematically more convenient and physically more interest-
ing than the method in the previous section. Instead of going through
the rigorous tensor analysis to derive the affine connections before pro-
ceeding to derive the conservation laws; we simply need to build the
covariant metric tensor and use the generalized Lagrangian to deduce
the conservation laws.

Using the fact that the Lagrangian L= ǫ, with ǫ=1 for time like
orbits and ǫ=0 for null orbits the planetary equation of motion in this
gravitational field is

d2u

dφ2
− 3u

(
1 + u2

) du
dφ

+
u+ u2

2

(
u2 − u+ 2

)
×

×
(
1 +

2

c2
f(u)

)
=

(
1 + u2

acl

)2 (
a2c2u2 − 1− u2

) d

du
f(u) . (3.15)

It can be solved to obtain the perihelion precision of planetary orbits.
This is opened up for further research.

The photon equation of motion in the vicinity of a static massive
homogenous oblate spheroidal body is obtained as

d2u

dφ2
− 3u

(
1 + u2

) du
dφ

+
u+ u2

2

(
u2 − u+ 2

)
×

×
(
1 +

2

c2
f(u)

)
=
u2

c2
(
1 + u2

)2 d

du
f(u) . (3.16)

In the limit of special relativity, some terms in equation (3.16) vanish
and the equation becomes

d2u

dφ2
− 3u

(
1 + u2

) du
dφ

+
u+ u2

2

(
u2 − u+ 2

)
. (3.17)
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The solution of the special relativistic case, equation (3.17) can be
used to solve the general relativistic equation, (3.16). This can be done
by taking the general solution of equation (3.17) to be a perturbation
of the solution of equation (3.16). The immediate consequence of this
analysis is that it will produce a new expression for the total deflection
of light grazing a massive oblate spheroidal body such as the Sun. This
is also open for further research and astrophysical interpretations.

§3.1.3. Effects of oblateness of the Sun and planets on some
gravitational phenomena

Gravitational scalar potential along the pole and equator of
the homogeneous oblate spheroidal Sun and planets. The com-
puted numerical values of the constants ξ0 and a for the oblate spher-
oidal bodies in the Solar System are given in Table 2.

Equatorial Polar
Body radius x0 × 103 radius z0 × 103 ξ0 a, m

Sun 700,00 699,994 241.52 2.89829 × 106

Mercury 2,440 2,440 — —
Venus 6,052 6,052 — —
Earth 6,378 6,356 12.01 5.29226 × 105

Mars 3,396 3,376 09.17 3.68157 × 105

Jupiter 71,490 66,843 02.64 2.53193 × 107

Saturn 60,270 53,761 01.97 2.72899 × 107

Uranus 25,560 24,793 03.99 6.21378 × 106

Neptune 24,760 24,116 04.30 5.60837 × 106

Table 2: Computed constants ξ0 and a for the Sun and planets [10].

The gravitational scalar potential exterior to a homogeneous oblate
spheroid [4] is given as

f(η, ξ) = B0Q0(−iξ) +B2Q2(−iξ)P2(η) , (3.18)

where Q0 and Q2 are the Legendre functions linearly independent to the
Legendre polynomials P0 and P1 respectively. B0 and B2 are constants
with approximate expressions as

B0 ≈ i
4πGρ0a

2ξ50
3 (1 + ξ20)

, (3.19)

B2 ≈ i
4πGρ0a

2ξ50
3
[
44ξ20 + (1 + 3ξ20) (

2
0)
] . (3.20)
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The mean density ρ0 for various bodies in the universe is taken
according to the astronomical data. With the values of ξ0 and a in Ta-
ble 2, we get the values for the constantsB0 and B2 for the homogeneous
oblate spheroidal Sun and planets as in Table 3.

Mean density
Body ρ0, kg/m

3 i B0, Nm/kg i B2, Nm/kg

Sun 1409 4.67961 × 1013 8.91380 × 107

Mercury 5400 — —
Venus 5200 — —
Earth 5500 7.43766 × 108 1.70123 × 105

Mars 3900 1.13049 × 108 4.40357 × 105

Jupiter 1300 3.76352 × 109 1.50951 × 107

Saturn 690 8.76690 × 108 5.70607 × 106

Uranus 1300 8.41939 × 108 1.61800 × 106

Neptune 1600 1.06534 × 109 1.78225 × 106

Table 3: Values of the constants B0 and B2 for the Sun and Planets [17].

By considering the first two terms of the series expansion of the
Legendre functions, we can write

f(η, ξ) ≈ B0

3ξ3
(
1 + 3ξ2

)
i+

B2

30ξ3
(
7 + 15ξ2

)
i , (3.21)

f(η, ξ) ≈ B0

3ξ3
(
1 + 3ξ2

)
i− B2

30ξ3
(
7 + 15ξ2

)
i , (3.22)

as the respective expressions for the gravitational scalar potential along
the equator and pole exterior to homogeneous oblate spheroidal bod-
ies. Now, with the computation of the constant ξ0 for the homogeneous
oblate spheroidal Sun and planets, we can now evaluate the scalar poten-
tial along the equator and the pole at various points (multiples of ξ0)
exterior to the Sun and planets. The detailed results are presented
in [10]. Our computations agree satisfactorily with the experimental
fact that the Gravitational Scalar Potential exterior to any regularly
shaped object has maximum magnitude on the surface of the body and
decreases to zero at infinity.

The consequence of the results obtained above is that the exact shape
of the planets and Sun was used to obtain the gravitational scalar po-
tential on the surface at the pole and equator. Thus, instead of using
the values obtained by considering the Sun and planets as homogeneous
spheres, our experimentally convenient values obtained can now be used.
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The door is now open for the computation of values for various gravita-
tional phenomena exterior to the static homogeneous oblate spheroidal
Sun and planets along the equator and pole. Some of these phenomena
include gravitational length contraction and time dilation.

Gravitational time dilation in fields exterior to static oblate
spheroidal distributions of mass. Consider a clock at rest at a fixed
point (η, ξ, φ) in the gravitational field exterior to an oblate spheroidal
mass, the world line element for this gravitational field reduces to

dt =

(
1 +

2

c2
f(η, ξ)

)1/2
dτ . (3.23)

Expanding the right hand side gives

dt =

(
1 +

2

c2
f(η, ξ) + . . .

)1/2
dτ . (3.24)

We obtain that dt>dτ (dilation). Thus, coordinate time of a clock
in this gravitational field is dilated relative to proper time.

As an illustration, consider two events at fixed points exterior to the
homogenous oblate spheroidal Earth along the equator, separated in this
gravitational field by coordinate time dt and proper time dτ . Substitut-
ing the values for the gravitational scalar potential into the equation for
gravitational time dilation (3.24), (approximate fields) yields the results
presented in Table 4.

Thus, we conclude that clock runs more slowly at a smaller dis-
tance from the massive oblate spheroidal body. In other words, clocks
will run slower at lower gravitational potentials (deeper within a grav-
ity well). This was first confirmed experimentally in the laboratory by
the Hafele-Keating experiment [22]. Today, there are numerous direct
measurements of gravitational time dilation using atomic clocks [23],
while ongoing validation is provided as a side-effect of the operation of
Global Positioning System (GPS). One important experiment that was
conducted to support Einstein’s principle of time dilation was the ex-
periment by Rossi and Hall in 1941 and repeated recently in accelerator
rings. In this experiment, muons travelling with a velocity close to the
velocity of light are observed to survive longer than muons that travel
with velocities that are much less than that of light. Also, in 1976, the
Smithsonian Astrophysical Observatory sent aloft a Scout rocket to an
altitude of 10,000 km. This expedition also confirmed gravitational time
dilation.
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Fixed point along Radial distance along dt as a factor
the Equator the Equator, km of dτ

ξ0 6,378 1.306170
2 ξ0 12,723 1.122655
3 ξ0 19,075 1.076871
4 ξ0 25,430 1.055996
5 ξ0 31,784 1.044042
6 ξ0 38,140 1.036296
7 ξ0 44,495 1.030867
8 ξ0 50,851 1.026852
9 ξ0 57,207 1.023761

10 ξ0 63,562 1.021308

Table 4: Coordinate time at fixed points along the equator in the gravitational
field exterior to the Earth as a factor of proper time [11].

Gravitational length contraction in fields exterior to oblate
spheroidal distributions of mass. Here, the space part of the world
line element in the gravitational field exterior to an oblate spheroidal
mass is used with the angular coordinates kept constant. This gives us
an expression for gravitational length contraction in this field as

ds =


 a2

1 + ξ2 − η


 ξ2

1 + 2
c2
f(η, ξ)

+
η2
(
1− η2

)

(1 + ξ2)





1/2

dξ . (3.25)

Along the equatorial line, η = 0 and equation becomes

ds = a ξ
(
1 + ξ2

)−1/2
(
1 +

2

c2
f(η, ξ)

)−1/2

dξ . (3.26)

It can be shown that ds > dξ from equation (3.26). In other words,
the coordinate distance separating these two points is contracted in this
gravitational field. Thus, we can write

dξ = (a ξ)−1
(
1 + ξ2

)1/2
(
1 +

2

c2
f(η, ξ)

)1/2
ds (3.27)

as our expression for gravitational length contraction along the equator
in this gravitational field.

As an illustration of this gravitational phenomenon, we can consider
a long stick lying radially along the equator in the approximate gravita-
tional field of a static homogeneous oblate spheroidal mass such as the
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Earth. Let the ξ-coordinates of the ends be ξ1 and ξ2, where ξ2 > ξ1.
Then the formula for its proper length will be as that found in [11].

Gravitational spectral shift in gravitational fields exterior to
oblate spheroidal distributions of mass or pressure Here, we
consider a beam of light moving from a source or emitter at a fixed point
in the gravitational field of the oblate spheroidal body to an observer
or receiver at a fixed point in the same gravitational field. Einstein’s
equation of motion for a photon is used to derive an expression for the
shift in frequency of a photon moving in the gravitational field of an
oblate spheroidal mass as.

Now, consider a beam of light moving from a source or emitter (E)
at a fixed point in the gravitational field of an oblate spheroidal body
to an observer or receiver (R) at a fixed point in the field. Let the
space-time coordinates of the emitter and receiver be tE, ηE, ξE, φE and
tR, ηR, ξR, φR respectively. It is a well known fact that light moves along
a null geodesic given by

dτ = 0 . (3.28)

Thus, the world line element for a photon (light) takes the form

c2 g00dt
2 = g11dη

2 + 2g12dηdξ + g22dξ
2 + g33dφ

2. (3.29)

Substituting the covariant metric tensor for this gravitational field
and let u be a suitable parameter that can be used to study the motion
of a photon in this gravitational field then equation (3.29) can be written
as

dt

du
=

1

c

(
1 +

2

c2
f(η, ξ)

)−1/2

ds , (3.30)

where ds is defined as

ds2 = − a2

1 + ξ2 − η2

[
η2
(
1 +

2

c2
f(η, ξ)

)−1

+
ξ2
(
1 + ξ2

)

(1− η2)

](
dη

du

)2
−

− 2a2ηξ

1 + ξ2 − η2

[
1−

(
1 +

2

c2
f(η, ξ)

)−1
]
dη

du

dξ

du
−

− a2
(
1 + ξ2

)(
1− η2

)(dφ
du

)2
−

− a2

1 + ξ2 − η2

[
ξ2
(
1 +

2

c2
f(η, ξ)

)−1

+
η2
(
1 + η2

)

(1− ξ2)

](
dξ

du

)2
. (3.31)
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Integrating equation (3.30) for a signal of light moving from emitter
to receiver gives

tR − tE =
1

c

∫ uR

uE

[(
1 +

2

c2
f(η, ξ)

)−1/2

ds

]
du . (3.32)

The time interval between emission and reception of all light signals
is well known to be the same for all light signals in relativistic mechanics
(constancy of the speed of light) and thus the integral on the right
hand side is the same for all light signals. Consider two light signals
designated 1 and 2 then

∆tR = ∆tE . (3.33)

Hence, coordinate time difference of two signals at the point of emis-
sion equals that at the point of reception. From our expression for
gravitational time dilation in this gravitational field, we can write

∆τR =

(
1 +

2

c2
f(η, ξ)

)1/2
∆tR (3.34)

Hence

∆τR
∆τE

=


1 + 2

c2
fR(η, ξ)

1 + 2
c2
fE(η, ξ)



1/2

. (3.35)

Now, consider the emission of a peak or crest of light wave as one
event. Let n be the number of peaks emitted in a proper time inter-
val ∆τE, then, by definition, the frequency of the light relative to the
emitter, νE, is given as

νE =
n

∆τE
. (3.36)

Similarly, since the number of cycles is invariant, the frequency of
light relative to the receiver, νR, is given as

νR =
n

∆τR
. (3.37)

Consequently,

νR

νE

=
∆τE
∆τR

=



1 + 2
c2
fE(η, ξ)

1 + 2

c2
fR(η, ξ)




1/2

. (3.38)

The expressions on the right hand side of equation (3.38) are con-
verging and can be expanded binomially in approximate gravitational
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fields. This gives

z ≡ ∆ν

νE

≡ νR − νE

νE

≈ 1

c2
(
fE (η, ξ)− fR (η, ξ)

)
(3.39)

to the order of c−2. It follows from equation (3.39) that if the source is
nearer the body than the receiver then fE (η, ξ) − fR (η, ξ) and hence
∆ν < 0. This indicates that there is a reduction in the frequency of
light when the source or emitter is nearer the body than the receiver.
The light is said to have undergone a red shift (that is the light moves
towards red in the visible spectrum). Otherwise (source further away
from body than receiver), the light undergoes a blue shift.

This was experimentally confirmed in the laboratory by the Pound-
Rebka experiment in 1959 [24] (they used the Mossbauer effect to mea-
sure the change in frequency in gamma rays as they travelled from the
ground to the top of Jefferson Labs at Havard University). The ef-
fect of a gravitational potential difference on the apparent energy of the
14.4 keV gamma ray of Fe57 was found by Pound and Rebka [25] to agree
within uncertainties, with Einstein’s prediction based on his principle
of equivalence (General Relativity). Pound and Rebka in 1964 [26] im-
proved on their earlier results confirming Einstein’s prediction to greater
precision. The resonance of the 14.4 keV Fe57 gamma ray between Iron
foils was still employed. The same height as in the earlier experiment in
the Jefferson Physical Laboratory (22.5 m) was also used. This gravita-
tional phenomenon was later confirmed by astronomical observations.

Now, suppose the Pound-Rebka experiment was performed at the
surface of the Earth on the equator. Then, since the gamma ray fre-
quency shift was observed at a height of 22.5 m above the surface, we
model our theoretical computation and calculate the theoretical value
for this shift.

Recall that at the surface of the Earth, on the equator, we have
x0 = 6378000 m. Numerical values of a and ξ0 are defined as in Ta-
ble 2. The value of x at a height of 22.5 m above the surface is trivially
x0 + 22.5 = 6378022.5 m. Using the value of a for the Earth from
Table 2 it is shown that ξ at the point is 12.0100447. For spectral
shift of light emitted at the surface and received 22.5 m above the sur-
face of the Earth, along the equator, equation (3.39) holds in approx-
imate gravitational fields. In this case, fE =−6.2079113×107 Nm/kg;
this is the gravitational scalar potential on the surface of the Earth
on the equator. At the reception point, we use the value of ξ and
compute fR =−6.207888×107 Nm/kg. Thus, substituting the values
of fE, fR and c into equation (3.39) yields the shift in frequency as
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z ≃ 2.578×10−15. This value is quite close to that obtained by Pound
and Rebka (z ≃ 2.45×10−15) in 1964. The closeness of our theoret-
ically computed value for the Pound-Rebka experiment is remarkable
indeed. The difference can be accounted for by the slight discrepancy
between theory and experiment. Approximations made to the gravita-
tional scalar potential are also a possible contributing factor.

We can now conveniently predict the gravitational spectral shift for
Pound-Rebka experiment, if it was performed along the equator of the
Sun and oblate spheroidal planets. As in the case of the Earth, it can
be shown that the predicted shift in frequency is as shown in Table 5.

Body Distance ξ fR Predicted shift
km Nm/kg

Sun 700,022.5 241.527 −1.9373218 × 1011 −2.85889 × 10−21

Mars 3418.5 9.231 −1.2317966 × 107 −9.24256 × 10−20

Jupiter 71512.5 1.971 −1.4958977 × 109 −1.010111 × 10−20

Saturn 60292.5 1.971 −4.8484869 × 108 −1.902222 × 10−20

Uranus 25582.5 3.994 −2.1522082 × 108 −4.647889 × 10−20

Neptune 24782.5 4.304 −2.5196722 × 108 −5.168667 × 10−20

Table 5: Predicted Pound-Rebka shift in frequency for the Sun and other
oblate spheroidal planets.

With these predictions, astrophysicists and astronomers can now
attempt carrying out similar experiments on these planets. Although,
the prospects of carrying out such experiments on the surface of some of
the planets and Sun are less likely (due to temperatures on their surfaces
and other factors); theoretical studies of this type helps us to understand
the behavior of photons as they leave or approach these astrophysical
bodies. This will thus aid in the development of future astronomical
instruments that can be used to study these heavenly bodies.

Also, our expression for gravitational time dilation and spectral shift
can be used in place of those obtained from Schwarzschild’s field in the
expression of relativistic effects in the GRACE satellites. The GRACE
mission consists of two identical satellites orbiting the Earth at an alti-
tude of about 500 km. Dual-frequency carrier-phase GPS receivers are
flying on both satellites. They are used for precise orbit determination
and to time-tag the K-band ranging systems used to measure changes in
the distance between the two satellites. Kristine et al. [27] developed an
expression for the relativistic effects of low Earth orbiters (the GRACE
satellites). Their expression can be re-modified by considering our de-
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rived expressions in this work. This will improve on the accuracy of
GRACE data.

§3.2. General relativistic mechanics in homogeneous prolate
spheroidal gravitational fields

§3.2.1. Gravitational field equations exterior to a homoge-
neous prolate spheroidal mass

The generalized covariant metric tensor exterior to static homogeneous
prolate spheroidal distributions of mass or pressure is given as equations
(2.29) to (2.33). The contravariant metric tensor for this gravitational
field gµν can be obtained with the aid of the tensor equations (2.34)
and (2.35). The contravariant metric tensor has two additional non-
zero components not found in Schwarzschild field.

The coefficients of affine connection for the gravitational field exte-
rior to a static homogeneous prolate spheroidal mass can be found. The
curvature tensor for this gravitational field has twenty four non-zero
components.

The Ricci tensor for this gravitational field can thus be composed in
terms of the curvature tensor and the curvature scalar, R, can also be
obtained. The general relativistic field equations for a region exterior
to any astrophysical body are given as

R00 −
1

2
Rg00 = 0 , (3.40)

R11 −
1

2
Rg11 = 0 , (3.41)

R12 −
1

2
Rg12 = 0 , (3.42)

R22 −
1

2
Rg22 = 0 , (3.43)

R33 −
1

2
Rg33 = 0 . (3.44)

The gravitational field equations derived are second order partial
differential equations that can be solved and interpreted. All its mathe-
matically possible solutions may then be distinguished by physical con-
siderations, such as consistency with astrophysical or astronomical ob-
servations, data and facts. Hence, in principle, our arbitrary function,
f(η, ξ), which uniquely and completely determines the solution of Ein-
stein’s gravitational metric tensor field exterior to the static homoge-
neous prolate spheroidal mass or pressure distributions can be found.
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It is interesting to note that the number of distinct non-zero com-
ponents of the Ricci tensor is five. The number of distinct non-zero
components of the Ricci tensor is always the same, no matter the na-
ture of the mass distribution within prolate spheroidal regions. This
number corresponds to the number of distinct non-zero components of
the metric tensor in this field. It is also equal to the number of distinct
field equations possible in the gravitational field.

Thus, generally, in prolate spheroidal fields, the rigorous field equa-
tions are nonlinear differential equations. The Schwarzschild’s solution
is a rigorous solution of Einstein’s field equations and we have succeeded
to extend his results to fields exterior to prolate spheroidal masses.
Schwarzschild’s solution is significant because it is the only solution of
the field equations in empty space which is static, which has spherical
symmetry, and which goes over into the flat metric at infinity [1]. Also,
in fields exterior to static homogenous prolate spheroidal masses (with
the approximate expression for our arbitrary function given as Newton’s
gravitational scalar potential exterior to the body), the metric reduces
conveniently to the flat space metric for prolate spheroidal masses at
infinity (since the gravitational potential reduces to zero at infinity).

§3.2.2. Solutions to gravitational field equations exterior to
homogeneous prolate spheroidal masses

It can be shown trivially that no two of these five Einstein field equations
possess a common simultaneous solution. Consequently these equations
may only be solved separately and their different solutions applied when-
ever and wherever necessary and useful in physical theories.

It is also obvious that in the case of the static homogenous distri-
bution of mass within a prolate spheroidal region in this research work,
all the five nontrivial Einstein field equations possess their own differ-
ent solutions which may be applied whenever and wherever useful in
physical theory.

In this section, we construct the solution for the first field equation,
equation (3.40). Writing the various terms of the field equation (3.40)
explicitly in terms of the metric tensor and simplifying by grouping
yields a more explicit expression of the field equation with only terms
of order c−2 as

K1 (η, ξ) fηη +K2 (η, ξ) fη ξ +K3 (η, ξ) fξξ +

+K4 (η, ξ) fη +K5 (η, ξ) fξ +K6 (η, ξ) f = 0 , (3.45)

where the coefficients Ki (i=1, . . . , 6) are functions of ξ and η only.
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Equation (3.45) is thus our simplified exterior field equation to the
order of c−2 for homogeneous prolate spheroidal gravitational fields.
We can now conveniently seek to construct the astrophysically most
satisfactory solutions of equation (3.45) which are convergent in the
exterior space-time:

ξ > ξ0 and − 1 6 η 6 1 . (3.46)

Let us now seek the solution f , of our field equation (3.45) in the
form of a power series

f (η, ξ) =
∞∑

n=1

Rn (ξ) η
n, (3.47)

where Rn is a function to be determined for each value of n = 0, 1, 2, . . .
Substituting equation (3.47) into (3.45) and using the fact that {ηn}∞n=0

is a linearly independent set, we can equate the coefficients of ηn on both
sides and hence obtain the equations satisfied by the functions Rn. From
the coefficients of η0 we obtain the equation

ξ2
(
ξ2 − 1

)
R

′

1 (ξ) + 2
(
ξ2 − 1

) (
ξ3 − ξ − 2

)
R1 (ξ) +

(
ξ2 − 1

)2 ×

×
(
4ξ3 + 2ξ2 + ξ − 1

)
R′

0 (ξ) +
[
4
(
2 + ξ2

)
+ 8ξ8

(
ξ2 − 1

)
+

+ 2
(
ξ2 − 1

)2 (
2ξ4 − 2ξ8 − 4ξ3 − 1

)]
R0 (ξ) = 0 . (3.48)

Equation (3.48) is the first recurrence differential equation for the
unknown functions Rn. Similarly all the other recurrence differential
equations follow. There are infinitely many of the recurrence differential
equations to determine all the unknown functions.

Firstly, it is most interesting and instructive to note that according
to the first recurrence differential equation (3.48), the unknown func-
tions R0 and R1 are actually arbitrary. Therefore we have the freedom
to choose them to satisfy the physical requirements or needs of any
particular distribution or area of application. Thus, we realize that
they can be chosen in such a way that there are generalizations of the
gravitational scalar potential exterior to the mass distribution.

Secondly, we note that the first recurrence differential equation
(3.48) determines the unknown function R1 in terms of R0. Similarly,
the other recurrence differential equations will determine all the other
unknown functions R2, . . . , in terms of R0. Hence we obtain the general
exterior solution of equation (3.45) in terms of R0. This is our math-
ematically most simple and astrophysically most satisfactory general
exterior solution of order c−2.
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§3.2.3. Motion of particles of non-zero rest masses exterior to
static homogeneous prolate spheroidal space-time

The time equation of motion is obtained as

d

dτ

(
ln ṫ
)
+

d

dτ

[
ln

(
1 +

2

c2
f (η, ξ)

)]
= 0 (3.49)

with solution

ṫ =

(
1 +

2

c2
f (η, ξ)

)−1

. (3.50)

Equation (3.50) is the expression for the variation of the time on a
clock moving in this gravitational field. It is of same form as that ob-
tained in the oblate spheroidal gravitational field and in Schwarzschild’s
field The η-equation and ξ-equation of motion are

η̇ + Γ1
00 c

2 ṫ2 + Γ1
11 η̇

2 + Γ1
22 ξ̇

2 + Γ1
33 φ̇

2 + 2Γ1
12 η̇ ξ̇ = 0 , (3.51)

ξ̈ + Γ2
00 c

2 ṫ2 + Γ2
11 η̇

2 + Γ2
22 ξ̇

2 + Γ2
33 φ̇

2 + 2Γ2
12 η̇ ξ̇ = 0 . (3.52)

For azimuthal motion,

d

dτ

(
ln φ̇

)
+

d

dτ

[
ln
(
η2 − 1

) (
1− ξ2

)]
= 0 , (3.53)

with solution

φ̇ =
l

(η2 − 1) (1− ξ2)
, (3.54)

where l is a constant of motion. Herein l physically corresponds to the
angular momentum. This is the law of conservation of angular momen-
tum in this gravitational field. It has the same form as that obtained
in the oblate spheroidal gravitational field and does not depend on the
gravitational potential. Therefore, it is of same form as that obtained
in Schwarzschild’s and Newton’s dynamical theory of gravitation. The
significance of these results is that the law of conservation of angu-
lar momentum takes the same form in the three different gravitational
fields and thus the expression for this law of mechanics is invariant with
respect to the three gravitational fields.

§3.2.4. Orbits in homogeneous prolate spheroidal space-time

The Lagrangian in the space-time exterior to a prolate spheroid is used
to obtain

d2u

dφ2
− 2u

1 + u2
du

dφ
+

(
1 + u2

acl

)2
df

du
= 0 (3.55)
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as the planetary equation of motion and

d2u

dφ2
− 2u

1 + u2
du

dφ
= 0 (3.56)

as the photon equation of motion in the vicinity of a static massive
homogenous prolate spheroidal body.

Conclusion

The practicability of the findings in this work is an encouraging factor.
More so, that in this age of computational precision, the applications
of these results is another factor. This work exposes the philosophical
and theoretical successes/failures of General Relativity theory to the
advancement of studies in gravitation. The astrophysical applications
of our extension abound as all applications of Schwarzschild’s metric
in studying gravitational phenomena in the Solar System can now be
studied using our new approach.

With the formulation of our mathematically most simple and astro-
physically most satisfactory solutions to Einstein’s gravitational field
equations the way is opened for the solution of the general relativistic
equations of motion for all test particles in the gravitational fields of
all static homogeneous distributions of mass within prolate spheroidal
regions in the universe. And precisely because these equations contain
the pure Newtonian as well as post-Newtonian gravitational scalar po-
tentials all their predictions shall be most naturally comparable to the
corresponding predictions from the pure Newtonian theory. This is most
satisfactory indeed.

It is now obvious how our work may be emulated to

1) Derive a mathematically most simple structure for all the metric
tensors in the space-times exterior or interior to any distribution
of mass within any region having any of the geometries in nature,

2) Formulate all the nontrivial Einstein geometrical gravitational
field equations and derive all their general solutions, and

3) Derive astrophysically most satisfactory unique solutions for ap-
plication to the motions of all test particles and comparison with
corresponding pure Newtonian results and applications. Therefore
our goal in this research work has been completely achieved: to
use the case of a spheroidal distribution of mass to show how the
much vaunted Einstein’s geometrical gravitational field equations
may be solved exactly and analytically for any given distribution
of mass within any region having any geometry.
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On a final note, the theme studied in this research work is obvi-
ously very attractive as it is related to the expansion of our views to
boundaries far away from our everyday experience, and opens beau-
tiful horizons for possible laboratory, astrophysical and astronomical
experiments. Naturally, Einstein’s equations are of great importance to
mankind, even if most people don’t understand it clearly. By connect-
ing the geometrical properties of space with the physical properties of
matter, the equations regulate almost all of the space-time functions of
our life. We are living in not just a mere three dimensional space, but
in time that is manifested as the change of all physical structures (even
the most stable physical structures change). The change of geometric
formations changes the coordinate nets and hence, changes the geomet-
rical structure of the space we observe. Einstein’s equations rule this
process. We are very optimistic that in the future, when people will fail
to use oil as the source of energy, Einstein’s equations will be the main
engine for a theoretical physicist working on the sources of energy or
related problems. People will turn their attention to more obvious and
bizarre energetics than simply using oil or other fuels. As researchers in
gravitational physics, we see many excellent sources of energy around
us. These are the planets orbiting the Sun, rotating stars, stellar en-
ergy and many others. These sources are working from other principles
than those known to modern theoretical physics. But these sources are
not obvious as the self-rotating Sun (it should come to a halt after 2.5
revolutions due to internal viscosity) or the planets orbiting it (they
also should experience a halt). The energy propelling these systems can
be best understood from the space-time geometry and thus Einstein’s
theory of gravitation has a very promising future.
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Geometric Thermodynamics of Kerr-AdS

Black Hole with the Cosmological Constant

as a State Variable

Alexis Larrañaga∗ and Sindi Mojica†

Abstract: The thermodynamics of the Kerr-AdS black hole is re-
formulated within the context of the formalism of geometrothermo-
dynamics (GTD) and the cosmological constant is considered as a
thermodynamical parameter. We conclude that the mass of the black
hole corresponds to the total enthalpy of this system. Choosing ap-
propriately the metric in the manifold of equilibrium states, we study
the phase transitions as a divergence of the thermodynamical curva-
ture scalar. This approach reproduces the Hawking-Page transition
and shows that considering the cosmological constant as a thermody-
namical parameter does not contribute new phase transitions to the
pre-existing picture.
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§1. Introduction. The thermodynamics of black holes has been
studied extensively since the work of Hawking [1]. The notion of crit-
ical behavior for black holes has arisen in several contexts from the
Hawking-Page [2] phase transition in anti-de-Sitter (AdS) background
to the pioneering work by Davies [3] on the thermodynamics of Kerr-
Newman black holes and the idea of the extremal limit of various black
hole families regarded as genuine critical points [4–6]. Recently, some
authors have considered the cosmological constant Λ as a dynamical
variable [7,8] and it has further been suggested that it is better to con-
sider Λ as a thermodynamic variable, [9–13]. Physically, Λ is interpreted
as a thermodynamic pressure in [14, 15], a fact that is consistent with
the observation in [16–18] that its conjugate thermodynamic variable is
proportional to a volume.
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The use of geometry in statistical mechanics was pioneered by Rup-
peiner [19] and Weinhold [20], who suggested that the curvature of
a metric defined on the space of parameters of a statistical mechani-
cal theory could provide information about its phase structure. When
this treatment is applied to the study of black hole thermodynamics,
some puzzling anomalies appear. A possible solution was suggested by
Quevedo’s geometrothermodynamics (GTD) whose starting point [21]
was the observation that standard thermodynamics is invariant with
respect to Legendre transformations. The formalism of GTD indicates
that phase transitions occur at those points where the thermodynamic
curvature scalar is singular.

In this paper, we apply the GTD formalism to the Kerr-AdS black
hole to investigate the behavior of the thermodynamical curvature. As
is well known, a black hole with a positive cosmological constant has
both a cosmological horizon and an event horizon. These two surfaces
have, in general, different Hawking temperatures, which complicates
any thermodynamical treatment. Therefore, we will focus on the case
of a negative cosmological constant, though many of the conclusions are
applicable to the positive Λ case. Furthermore, the negative Λ case is
of interest for studies on AdS/CFT correspondence and the subsequent
considerations of this work are likely to be relevant in those studies.

§2. Geometrothermodynamics in brief. The formulation of
GTD is based on the use of contact geometry as a framework for ther-
modynamics. The (2n+1)-dimensional thermodynamic phase space T
is coordinatized by the thermodynamic potential Φ, the extensive vari-
ables Ea, and the intensive variables Ia, with a = 1, . . . , n. We define
on T a non-degenerate metric G = G(ZA) with ZA = {Φ, Ea, Ia}, and
the Gibbs 1-form Θ = dΦ − δab I

adEb with δab = diag(1, 1, . . . , 1). If
the condition Θ∧ (dΘ)n 6= 0 is satisfied, the set (T ,Θ, G) defines a con-
tact Riemannian manifold. The Gibbs 1-form is invariant with respect
to Legendre transformations, while the metric G is Legendre invariant
if its functional dependence on ZA does not change under a Legendre
transformation. This invariance guarantees that the geometric proper-
ties of G do not depend on the thermodynamic potential used in its
construction.

Now, we define the n-dimensional subspace of equilibrium thermo-
dynamic states, E ⊂ T , by means of the smooth mapping

ϕ : E −→ T
(Ea) 7−→ (Φ, Ea, Ia)

}
, (1)
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with Φ = Φ(Ea), and the condition ϕ∗(Θ) = 0, which gives the first law
of thermodynamics

dΦ = δab I
a dEb, (2)

and the conditions for thermodynamic equilibrium (the intensive ther-
modynamic variables are dual to the extensive ones),

∂Φ

∂Ea
= δab I

b. (3)

The mapping ϕ defined above implies that we know the equation Φ=
=Φ(Ea) explicitly. It is known as the fundamental equation, and from
it can be derived all the equations of state. The second law of thermody-
namics is equivalent to the convexity condition on the thermodynamic
potential,

∂2Φ

∂Ea ∂Eb
> 0 . (4)

Since the thermodynamic potential satisfies the homogeneity condi-
tion Φ(λEa) = λβΦ(Ea) for constant parameters λ and β, it satisfies
Euler’s identity,

β Φ(Ea) = δab I
bEa, (5)

and using the first law of thermodynamics, this gives the Gibbs-Duhem
relation,

(1− β) δab I
adEb + δabE

adIb = 0 . (6)

Defining a non-degenerate metric structure g on E that is compat-
ible with a metric G on T , we state that a thermodynamic system is
described by the thermodynamical metric G [21] if it is invariant with
respect to transformations which do not modify the contact structure
of T . In particular, G must be invariant with respect to Legendre
transformations in order for GTD to be able to describe thermody-
namic properties in terms of geometric concepts independently of the
the thermodynamic potential used. A partial Legendre transformation
is written as

ZA → Z̃A =
{
Φ̃, Ẽa, Ĩa

}
, (7)

where
Φ = Φ̃− δkl Ẽ

k Ĩ l

Ei = −Ĩi

Ej = Ẽi

Ii = Ẽi

Ij = Ĩj





, (8)
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with i ∪ j any disjoint decomposition of the set of indices {1, 2, . . . , n}
and k, l = 1, . . . , i. As is shown in [21], a Legendre invariant metric G
induces a Legendre invariant metric g on E defined by the pullback ϕ∗ as
g = ϕ∗(G). There is a vast number of metrics on T that satisfy the Leg-
endre invariance condition. The results of Quevedo et al. [22–24] show
that phase transitions occur at those points where the thermodynamic
curvature is singular and that the metric structure of the phase manifold
T determines the type of systems that can be described by a specific
thermodynamic metric. For instance, a pseudo-Euclidean structure

G = Θ2 +
(
δabE

aIb
)(
ηcd dE

cdId
)

(9)

with ηcd = diag (−1, 1, 1, . . . , 1) is Legendre invariant because of the
invariance of the Gibbs 1-form and induces on E the Quevedo’s metric

g =

(
Ef ∂Φ

∂Ef

)(
ηab δ

bc ∂2Φ

∂Ec ∂Ed
dEa dEd

)
, (10)

which describes systems characterized with second-order phase transi-
tions. On the other hand, an Euclidean structure

G = Θ2 +
(
δabE

aIb
)(
δcd dE

cdId
)

(11)

is also a Legendre invariant and induces on E the metric

g =

(
Ef ∂Φ

∂Ef

)(
∂2Φ

∂Ec ∂Ed
dEcdEd

)
, (12)

which describes systems with first-order phase transitions.

§3. The Kerr-AdS black hole. The Einstein action with cosmo-
logical constant Λ is given by

A =
1

16π

∫
d4x

√−g (R− 2Λ) , (13)

and the general solution representing a black hole is given by the Kerr-
AdS solution

ds2 = −∆r

ρ2

(
dt− a sin2 θ

Ξ
dϕ

)2
+

∆θ sin
2 θ

ρ2

(
adt− r2 + a2

Ξ
dϕ

)2
+

+ ρ2
(
dr2

∆r
+
dθ2

∆θ

)
, (14)
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where

∆r =
(
r2 + a2

)(
1− Λr2

3

)
− 2mr , (15)

∆θ = 1+
Λa2

3
cos2 θ , (16)

ρ2 = r2 + a2 cos2 θ , (17)

and

Ξ = 1 +
Λa2

3
. (18)

The physical parameters of the black hole can be obtained by means
of Komar integrals using the Killing vectors ∂t

Ξ and ∂ϕ. In this way, one
obtains the mass of the black hole

M =
m

Ξ2
(19)

and its angular momentum

J = aM = a
m

Ξ2
. (20)

The horizons are given by the roots of

∆r = 0 . (21)

In particular, the largest positive root located at r = r+ defines the
event horizon with an area

A = 4π

(
r2
+
+ a2

)

Ξ
. (22)

The Smarr formula for the Kerr-AdS black hole gives the relation

M2 = J2

(
π

S
− Λ

3

)
+

S3

4π3

(
π

S
− Λ

3

)2
(23)

that corresponds to the fundamental thermodynamical equation M =
=M (S, J,Λ) which relates the total mass M of the black hole with the
extensive variables, entropy S = A

4 , angular momentum J and cosmo-
logical constant Λ, and from which all the thermodynamical information
can be derived.

In the geometric formulation of thermodynamics, we will choose the
extensive variables as Ea = {S, J,Λ} and the corresponding intensive
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variables as Ia = {T,Ω,Ψ}, where T is the temperature, Ω is the an-
gular velocity and Ψ is the generalized variable conjugate to the state
parameter Λ. Therefore, the coordinates that we will use in the 7-
dimensional thermodynamical space T are ZA= {M,S, J,Λ, T,Ω,Ψ}.
The contact structure of T is generated by the 1-form

Θ = dM − TdS − ΩdJ −ΨdΛ . (24)

To obtain the induced metric in the space of equilibrium states E we
will introduce the smooth mapping

ϕ : {S, J,Λ} 7−→
7−→ {M(S, J,Λ), S, J,Λ, T (S, J,Λ) ,Ω (S, J,Λ) ,Ψ(S, J,Λ)} (25)

along with the condition ϕ∗(Θ) = 0, that corresponds to the first law
dM = TdS+ΩdJ+ΨdΛ. This condition also gives the relation between
the different variables with the use of the fundamental relation (23). The
Hawking temperature is evaluated as

T =
∂M

∂S
=

S2

8π3M

(
π

S
− Λ

3

)(π
S

− Λ
)
− πJ2

2MS2
, (26)

the angular velocity is

Ω =
∂M

∂J
=

J

M

(
π

S
− Λ

3

)
(27)

and the conjugate variable to Λ is

Ψ =
∂M

∂Λ
= − S3

12π3M

(
π

S
− Λ

3

)
− J2

6M
. (28)

As can be seen, Ψ has dimensions of a volume. In fact, in the limit
of a non-rotating black hole, J → 0, we have Ψ=− 4

3r
3
+
(see [25]) and

it can be interpreted as an effective volume excluded by the horizon, or
alternatively a regularized version of the difference in the total volume
of space with and without the black hole present [14–16]. Since the cos-
mological constant Λ behaves like a pressure and its conjugate variable
as a volume, the term ΨdΛ has the correct dimensions of energy and
is the analogue of V dP in the first law. This suggests that after ex-
panding the set of thermodynamic variables to include the cosmological
constant, the mass M of the AdS black hole should be interpreted as
the enthalpy rather than as the total energy of the spacetime.



74 The Abraham Zelmanov Journal — Vol. 5, 2012

The T becomes a Riemannian manifold by defining the metric (9),

G = (dM − TdS − ΩdJ −ΨdΛ)
2
+

+ (ST +ΩJ +ΨΛ) (−dSdT + dJdΩ+ dΛdΨ) . (29)

The G has non-zero curvature and its determinant is det ‖G‖ =

=− (ST+ΩJ+ΨΛ)6

64 . Equation (10) lets us define the induced metric struc-
ture on E as

g =
(
SMS + JMJ + ΛMΛ

)



−MSS 0 0
0 MJJ MJΛ

0 MJΛ MΛΛ


 , (30)

where subscripts represent partial differentiation with respect to the
corresponding coordinate. Note that the determinant of this metric is

det ‖g‖ =MSS

(
M2

JΛ −MJJMΛΛ

)
(SMS + JMJ + ΛMΛ)

3
. (31)

We can also define an Euclidean metric (11) on T , but there are no
phase transitions associated with this metric.

§4. Phase transitions and the curvature scalar. Phase transi-
tions are an interesting subject in the study of black hole thermodynam-
ics since there is no unanimity in their definition. In ordinary thermo-
dynamics, phase transitions are defined by looking for singular points in
the behavior of thermodynamical variables. Davis [3,26] shows that the
divergences in the heat capacity indicate phase transitions. For exam-
ple, using equation (23) we have that the heat capacity for the Kerr-AdS
black hole is

C = T
∂S

∂T
=

MS

MSS
, (32)

C =
S
(
π
S − Λ

3

) (
π
S − Λ

)
− 4π4J2

S3

(
π
S − Λ

3

) (
π
S − 2Λ

)
− π

S

(
π
S − Λ

)
+ 8π3

S2

(
πJ2

S2 − ST 2
) . (33)

Thus, one can expect that phase transitions occur at the divergences
of C, i.e. at points where MSS = 0. For negative Λ the divergence of
C corresponds to the generalization of the well-known Hawking-Page
transition [2]. In GTD, the emergence of phase transitions appears to
be related with the divergences of the curvature scalar R in the space
of equilibrium states E . To understand this relation, remember that R
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7
5

MSS =
144π7J4 (9π − 4ΛS) + 24π3J2S2 (3π − 2ΛS) (ΛS − 3π)2 + S4 (ΛS − 3π)3 (ΛS + π)

8π3/2S4
[
(ΛS−3π)(S2(ΛS−3π)−12π3J2)

S

]3/2 ,

MJJ = − 2π3/2 (ΛS − 3π)
3

[
(ΛS−3π)(S2(ΛS−3π)−12π3J2)

S

]3/2 ,

MΛΛ = − 6π9/2J4

[
(ΛS−3π)(S2(ΛS−3π)−12π3J2)

S

]3/2 ,

MJΛ =
12π9/2J3 (ΛS − 3π)

S
[
(ΛS−3π)(S2(ΛS−3π)−12π3J2)

S

]3/2 .
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always contains the determinant of the metric g in the denominator and,
therefore, the zeros of det ‖g‖ could lead to curvature singularities (if
those zeros are not cancelled by the zeros of the numerator).

Here we have considered the metric g given in (30) and its determi-
nant is proportional toMSS as shown in equation (31), making clear the
coincidence with the divergence of the heat capacity and the existence of
a second-order phase transition that corresponds to the generalization of
the Hawking-Page result. There is also a factor of

(
M2

JΛ −MJJMΛΛ

)
in

the determinant which codifies the information of non-constant Λ. Note
that the interesting second derivatives of the thermodynamic potential
are shown in Page 75.

As can be seen, for negative values of Λ the factor
(
M2

JΛ −MJJMΛΛ

)

is always positive. Therefore, we conclude that considering Λ as a new
thermodynamical state parameter does not produce new phase transi-
tions in the Kerr-AdS black hole.

§5. Conclusion. Quevedo’s geometrothermodynamics describes in
an invariant manner the properties of thermodynamic systems using
geometric concepts. It indicates that phase transitions would occur at
those points where the thermodynamic curvature R is singular. Follow-
ing Quevedo, the choice of the metric given in equation (10) apparently
describes second-order phase transitions.

In this work, we have applied the GTD formalism to the Kerr-AdS
black hole, considering the cosmological constant as a new thermody-
namical state variable. In this aproach, the total mass of the black
hole is interpreted as the total enthalpy of the system. Thus, we have
obtained a curvature scalar that diverges exactly at the point where
the Hawking-Page phase transition occurs. Since we have employed a
metric of the form given in (10) we conclude that this is a second-order
phase transition. It is also important to note that the consideration of
Λ as a thermodynamical variable does not include new phase transitions
in the system.

It is clear that the phase manifold in the GTD formalism contains
information about thermodynamic systems; however, it is not clear at
present where the thermodynamic information is encoded. A more de-
tailed investigation along these lines will be reported in the future.
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Why a Background Persistent Field

Must Exist in the Extended Theory

of General Relativity

Patrick Marquet∗

Abstract: In the framework of an Extended General Relativity
based on a semi-affine connection, we have postulated the existence
of a background persistent field filling the physical vacuum and af-
fecting the neighboring masses. In a holonomic scheme, the original
Weyl formulation for generalized variational fields leads to the energy-
momentum tensor of a perfect fluid in the Einstein field equation with
a massive source. Since both the Weyl and EGR connections are
shown to be equivalent in a particular way, the perfect fluid tensor
with its pressure appears as a Riemannian transcription of the EGR
massive tensor, with its surrounding active background field. This re-
sult would lend support to our assertion regarding the persistent field
within the EGR formulation.
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Introduction. In one of our earlier publications [1], we have worked
out an extended theory of general Relativity (EGR Theory) which allows
for a permanent field to exist, thus filling the physical vacuum. This
field appears as a continuity of the matter-pseudo-gravity field [2] which
is required to fulfill the conservation law for the corresponding energy-
momentum tensor in the classical GR theory. The existence of this
persistent field has been first predicted in another paper based on the
Lichnerowicz matching conditions applied to two spherically symmetric
metrics [3]. In the foregoing, we provide a strict demonstration based on
the properties of the so-called generalized variational manifolds [4, 5],
which are a general class of Finslerian spaces. This theory relies on
the symmetric Weyl connection which can be extended to the so-called
decomposable connection or semi-symmetric connection [6, p. 69–75].
The Weyl manifold is then entirely defined from a) the Riemannian
metric ds2 and b) a form dK =Kadx

a which is generally non-integrable.
In what follows, we will however restrict our study to the symmetric

part of the Weyl connection which readily relate to the EGR one in a
very simple way.

With respect to a holonomic frame (in the sense of Cartan), the form
dK becomes integrable, and we may establish a pure conformal metric
(ds2)′ whose conformal factor is e2K .

This conformal factor enables us to define 4-velocities collinear with
the unit 4-vectors of the Einstein metric and allow us to write simple
conformal geodesic equations for the flow lines of a specific type of
fluid. This differential system is nothing else but the geodesic equation
of a perfect fluid, where an equation of state links its proper density
and the pressure prescribed on it: ρ= f(p). So, by choosing a Weyl
connection that spans the generalized variational spaces and making
use of a holonomic frame, we are led to find the energy-momentum
tensor of a neutral perfect fluid Tab.

By relating the Weyl connection to the EGR connection in a very
simple way, the EGR massive tensor (Tab)EGR appears to be formally
equivalent to the form of Tab.
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This substantiates the existence of the EGR persistent field tensor
which in the Riemannian scheme is represented by a pressure term gab p,
and where the dynamical mass density ρ increases to (ρ + p), thus con-
firming our postulate that the EGR Theory describes trajectories of
dynamical entities comprising bare masses of particles and their own
gravity field [7].

Chapter 1. The Extended General Relativity (EGR)

§1.1. The Riemannian metric. In an open neighborhood of the
pseudo-Riemannian manifold V4, the metric of signature (+−−−) can
be expressed by

ds2 = gab θ
aθb, (1.1)

where θa are the Pffafian forms in the considered region a=4, 1, 2, 3.
The manifold considered here is always understood to be globally

hyperbolic [8]. We also set here c=1.

§1.2. Brief overview on the Extended General Relativity

§1.2.1. Basic properties. We first briefly recall here our previous
results. The non-metricity condition is ensured by the EGR covariant
derivative D or ′, of the metric tensor which has been found to be

Da gbc =
1

3

(
Jc gab + Jb gac − Ja gbc

)
. (1.2)

The vector Ja is related to a specific 4×4 Hermitean (γ5)EGR matrix
by

Ja = k tr (γ5)EGR , (1.3)

where k is a real positive constant [9].
One then considers the semi-affine connection (EGR connection)

(Γd
ab)EGR

= {dab}+ (Γd
ab)J (1.4)

with

(Γd
ab)J =

1

6

(
δda Jb + δdb Ja − 3 gab Jd

)
(1.5)

and the Christoffel symbols of the second kind {dab}.
If ∇a is the Riemannian derivative operator, we have thus inferred

the EGR curvature tensor:

(Ra
·bcd)EGR

= Ra
·bcd +∇dΓ

a
bc −∇cΓ

a
bd + Γf

bcΓ
a
fd − Γf

bdΓ
a
fc . (1.6)
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The contracted tensor

(Rab)EGR = Rab −
1

2

(
gab ∇e J

e +
1

3
JaJb

)
+

1

6
Jab

Jab = ∂a Jb − ∂b Ja





(1.7)

leads to the EGR Einstein tensor

(Gab)EGR = (Rab)EGR − 1

2

(
gabREGR − 2

3
Jab

)
(1.8)

with the EGR curvature scalar

REGR = R− 1

3

(
∇e J

e +
1

2
J2

)
. (1.9)

In the Riemannian regime, this tensor obviously reduces to the usual
Einstein tensor

Gab = Rab −
1

2
gabR.

§1.2.2. The EGR world-velocity. On the EGR manifold M, the
conoids, as defined in the Riemannian scheme, do not exactly coincide
with the EGR representation, because the EGR line element slightly
deviates from the standard Einstein geodesic invariant [10].

The EGR line element includes a small correction to the Riemann
invariant ds2 which we write as

(ds2)EGR = ds2 + d(ds2) , (1.10)

where
d(ds2) = (Dgab) dx

adxb (1.11)

with Dgab =
1
3 (Jc gab +Jb gac−Ja gbc)dxc.

Hence, the EGR line element is simply expressed by

(ds2)EGR =
(
gab +Dgab

)
dxadxb, (1.12)

which naturally reduces to the Riemannian (invariant) interval ds2 when
the covariant derivative of the metric tensor gab vanishes (i.e. when we
have Ja =0).

We can thus define an EGR 4-velocity as

(ua)EGR =
dxa

(ds)EGR

. (1.13)
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This vector will always be assumed to be a unit vector according to

gab (u
aub)EGR = gab (uaub)EGR = 1 . (1.14)

§1.3. The EGR persistent field. The EGR field equation with
a massive source is written

(Gab)EGR = κ
[
ρEGR(uaub)EGR + (tab)field

]
, (1.15)

where κ is Einstein’s constant.
The persistent field tensor is here assumed to represent a vacuum

homogeneous background energy which is linked to its density by

√−g (tab)field = (F ab)field . (1.16)

Explicitly, (Fab)field is derived from the canonical equations

(Fa
b )field =

1

2κ

[
Hδab − ∂b(Γ

e
df )EGR

∂H
∂(∂aΓe

df )EGR

]
, (1.17)

where the invariant density is H=(RabRab)EGR built itself with the
second-rank tensor density

(Rab)EGR = (Rab)EGR

√−g .

Chapter 2. The Perfect Fluid Solution

§2.1. The Weyl formulation. The essential work of Lichnérowicz
on The Generalized Variational Spaces begins by defining the symmetric

Weyl connection:

W a
bc = {abc}+ gad

(
gcdFb + gbdFc − gbcFd

)
. (2.1)

From the point M in the neighborhood of the space-time manifold
V4, a congruence of differentiable lines, such that for all m ∈ V4 there
is a unique curve joining M onto m, and thus the Weyl metric

(ds2)W = e2Fds2 (2.2)

can be defined, where

F =

∫ m

M

Kadx
a. (2.3)

The form dK =Kadx
a is generally non-integrable.
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§2.2. The holonomic scheme. In a holonomic frame [11, p. 45], we
have Ka = ∂aK, and the form dK is now integrable. In this case, we
simply write (2.2) as the conformal metric

(ds2)′ = e2Kds2 (2.4)

and the Weyl connection (2.1) reduces to the conformal connection

{abc}′ = {abc}+ gad
(
gcdKb + gbdKc − gbcKd

)
. (2.5)

§2.3. The fiber bundle framework

§2.3.1. Short overview on fiber bundles. Given an n-dimension-
al manifold M, we can construct another manifold called a fiber bundle

which is locally a direct product of M and a suitable space E, called the
total space. For a thorough theory see for example [12, p. 50–55]. In
this section, we shall only consider the tangent bundles category Tp(M),
(p ∈ M) which is the fiber bundle over the manifold M obtained by
giving the set E = ∪ Tp, its natural manifold structure and its natural
projection onto M. A trivial example is the manifold M representing
the circle S1 and the real line R1 with which can be constructed the
cylinder C2, as a product bundle over S1.

In the following we shall consider:

• The differentiable manifold V4;

• The bundle fiber space W2×4 of all vectors tangent to various
points of V4;

• The bundle fiber space D8−1 of all directions tangent to various
points of V4.

§2.3.2. Variational calculation. Most of the derivations detailed
in here can be found in [13, p. 72–75]. An element ∈ W8 is defined by
the coordinates xa of the point x ∈ V4, and by the four quantities ◦xa,
contravariant components of the vector in the natural basis associated
at x to the (xa). For an element of D8−1, the

◦xa will be only defined
as directional parameters such that

◦xa = xa(u) .

The curve C is the projection on V4 of the curve U of D8−1, locus
of all directions tangent to C at its various points. This parametrized
representation defining C is described in W8 by another curve L(u),
locus of the derivate vectors at u with respect to various points x of C.
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In local coordinates for L(u), we thus have:

◦xa =
dxa

du
. (2.6)

In these coordinates, we consider a scalar-valued function f(xa, ◦xa)
defined on W8 which is homogeneous and of first degree with respect
to ◦xa. On V4 to the curve C joining the points x0 onto x1 there can
always be associated the integral expressed in L(u) as:

Φ =

∫ u1

u0

f (xa, ◦dxa) =

∫ x1

x0

f (xa, dxa) . (2.7)

Always in local coordinates, let us now evaluate the variation of Φ
with respect to the variable points of C:

δΦ = fu1 δu1 − fu0 δu0 −
∫ u1

u0

δf du. (2.8)

Classically, inspection shows that

∫ u1

u0

δf du =

(
∂f

∂ ◦xa
δxa
)u=u1

u=u0

−
∫ u1

u0

Pa δx
adu, (2.9)

where the Pa are the first members of the Euler equations associated
with the function f .

We infer the expression

δΦ =
[
ω(δ)

]
x1 −

[
ω(δ)

]
x0 −

∫ u1

u0

Pa δx
adu, (2.10)

where ω(δ) has the form

ω(δ) =

(
∂f

∂ ◦xa

)
δxa −

(
◦xa

∂f

∂ ◦xa
− f

)
δu (2.11)

and due to the homogeneity of f , it reduces to

ω(δ) =
∂f

∂ ◦xa
δxa. (2.12)

The Pa are the components of a covariant vector P which appear as
a scalar product in (2.9):

δΦ =
[
ω(δ)

]
x1 −

[
ω(δ)

]
x0 −

∫ u1

u0

〈P δx〉 du. (2.13)
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§2.3.3. Specific variational derivation. Let us apply the above
results to the function

f = eK
ds

du
= eK

√
gab ◦xa ◦xb , (2.14)

where K is always defined in V4.
Between two points x0 and x1 of V4 connected by a time-like curve,

we set the integral

s′ =

∫ x1

x0

eKds =

∫ x1

x0

eK
√
gab ◦xa ◦xb . (2.15)

Then upon differentiation, we readily infer

f
∂f

∂ ◦xa
= e2Kgab

◦xb

f
∂f

∂ xa
= eK

(
∂a e

K gbc
◦xa ◦xc +

1

2
eK∂a gbc

◦xa ◦xc
)




. (2.16)

We now choose s as the parameter of the curve C, so the vector

◦xa =
dxa

ds
= ua (2.17)

is here regarded as the unit vector tangent to C.
Equations (2.16) then reduce to the following expressions

∂f

∂ ◦xb
= eKub

∂f

∂ xb
=

1

2
eK∂bgad u

aud + ∂b e
K

eK{abd} uaud + ∂b e
K






, (2.18)

where {abd} denotes the Christoffel symbols of the first kind.
In this parametrized formulation, the components Pb of P are writ-

ten

Pb =
d

ds

∂f

dxb
− ∂f

dxb
=

d

ds
(eKub)− eK{abd} uaud − ∂b e

K , (2.19)

i.e.

Pb = eK(ua∂aub)− {abd} uaud − ∂ae
K(δab − uaub) , (2.20)
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hence
Pb = eK(ua∇aub)− (∂aK)(δab − uaub) , (2.21)

and (2.13) becomes

δs′ =
[
ω(δ)

]
x1 −

[
ω(δ)

]
x0 −

∫ s1

s0

〈P δx〉 ds, (2.22)

where locally:
ω(δ) = eKuadx

a. (2.23)

When the curve C varies between two fixed points x0 and x1, (2.22)
obviously reduces to

δs′ = −
∫ x1

x0

〈P δx〉ds. (2.24)

In order to extremalize s′, P must be zero, and since eK 6=0, we
have

(ua∇a ub)− (∂aK)(δab − uaub) = 0 . (2.25)

Chapter 3. The Geodesic Equations

§3.1. The Riemannian situation. In V4, the unit vector satisfies

gab u
aub = gabuaub = 1 , (3.1)

and differentiating, we thus obtain

ub∇a ub = 0 . (3.2)

Let us now consider the covariant derivative

∇a (ru
aub) = r (∂bK) , (3.3)

where r is a scalar.
If we take into account (3.1) and (3.2), the equation (3.3) is equiva-

lent to
ua∇aub = (∂aK)(gab − uaub) (3.4)

after contracted multiplication by ub and division by r.
However, (3.3) is just the conservation condition applied to a tensor

Tab provided we set
r (∂bK) = ∇a (rδ

a
b ) . (3.5)
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Explicitly, the tensor Tab can be written:

Tab = r uaub − pgab . (3.6)

We note that this equation has the form of the well-known tensor
describing a perfect fluid with proper density ρ:

Tab = (ρ+ p)uaub − p gab (3.7)

with an equation of state ρ= f(p), and with r=(ρ+ p), where p is the
scalar pressure of the fluid.

Hence,

K =

∫ p

p0

dp

ρ+ p
, (3.8)

and
ua∇a ub = (∂aK)(gab − uaub) , (3.9)

i.e.
ua∇a ub = (∂aK)hab , (3.10)

where
hab = gab − uaub (3.11)

is the well-known projection tensor in the adopted signature.
The 4-vector ∂aK is regarded as the acceleration of the flow lines

given by the pressure gradient orthogonal to those lines.
We can thus draw a first conclusion: equations (2.25) and (3.9) are

formally identical. They represent the differential system which the flow
lines must satisfy, or in other words, they represent the geodesics of the
perfect fluid flow lines.

Theorem: In a holonomic frame, a perfect fluid follows time-like lines

extremalizing the integral

s′ =

∫ x1

x0

e2Kds (3.12)

for variations between two fixed points.

Therefore, these flow lines are time-like geodesics conformal to the
metric ds2:

(ds2)′ = e2Kds2 = e2Kgab dx
adxb (3.13)

with the following metric tensor components:

(gab)
′ = e2Kgab , (gab)′ = e−2Kgab. (3.14)
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One can find a similar conclusion in [14] and [15].

§3.2. The EGR geodesics for the EGR massive tensor.

§3.2.1. A conformal like 4-velocity. We now define the collinear
vectors wa with ua:

wa = eKua , wa = eKua, (3.15)

hence
(wa)

′ = eKua, (3.16)

(wa)′ = e−Kua. (3.17)

These are regarded as 4-velocities and are still unit vectors in the
conformal metric (ds2)′.

As a result, an alternative way of expressing (3.10) can be easily
shown to be

(wa)′(∇a)
′(wb)

′ = 0 , (3.18)

where (∇a)
′ is the covariant derivative in (ds2)′ which is built from the

conformal connection

{abc}′ = {abc}+ gad
(
gcdKb + gbdKc − gbcKd

)
. (3.19)

§3.2.2. Relation between the Weyl and the EGR connections.
We recall that the EGR theory is built from two types of curvature
forms in a dual basis:

The rotation curvature 2-form is:

Ωa
b = −1

2
Ra

·bcd θ
c∧ θd. (3.20)

The segmental curvature 2-form is:

Ω = −1

2
Ra

·acd θ
c∧ θd. (3.21)

This last form results from the variation of the parallely transported
vector around a closed path, a feat which necessarily induces Da gbc 6=0.

Therefore, the global symmetric connection is easily inferred as

Γa
bc = {abc}+ gad

(
Db gcd +Dc gbd −Dd gbc

)
(3.22)

and the Weyl connection

W a
bc = {abc}+ gad

(
gcdFd + gbdFc − gbcFd

)
(3.23)
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is simply obtained by setting

Da gbc = gbcFa . (3.24)

Hence, in this particular case, we can relate the EGR connection to
the Weyl counterpart by

gbcFa = Da gbc =
1

3

(
Jc gab + Jb gac − Ja gbc

)
. (3.25)

§3.2.3. The EGR geodesic equation. In a strict Weyl formula-
tion, the equation (3.4) can be derived up to

ua∇a ub = F a
(
gab − uaub ) , (3.26)

where the form dF =F adxa is not integrable.
The F can always be chosen so that we have the correspondence

eF (ua)EGR −→ (wa)
′ = eKua

e−F (ua)EGR −→ (wa)′ = e−Kua

}
. (3.27)

Therefore, the EGR geodesic equation for the neutral matter is anal-
ogously expressed by

(ua)EGRDa(ub)EGR = F a
[
gab − (uaub)EGR

]
. (3.28)

This equation is obeyed by the flow lines of the dynamical mass-
gravity field whose energy-momentum tensor is given by

(Tab)EGR =
[
ρEGR(uaub)EGR + (tab)field

]
, (3.29)

which is to be compared with the tensor

Tab =
(
ρ+ p

)
uaub − pgab . (3.30)

Consequences and conclusions. The main goal of our successives
studies is to provide a physical justification of the theory that predicts
an underlying medium which contains and unifies the particle and anti-
particle states, see [16–20].

To sustain this argument, we have asserted that the EGR Theory
must exhibit a background persistent field filling the standard physical
vacuum.
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In addition, when a neutral massive source is present, the persistent
field tensor should supersede the matter gravity pseudo-tensor neces-
sarily required by the conservation condition which is imposed by the
conserved Riemannian Einstein tensor.

Therefore, the EGR theory allows for describing the geodesic motion
of a dynamical entity that includes the bare mass slightly increased by
its own surrounding gravity field.

In this paper, we have strictly shown that this is indeed the case,
if one places himself in the frame of the generalized variational spaces
which are easily related to the EGR manifold.

Using then a holonomic frame of reference, we eventually find that
the inferred Riemannian perfect fluid tensor matches the model of the
EGR energy-momentum tensor of neutral homogeneous matter. In the
Riemannian scheme, the role of the persistent field tensor is taken up by
the fluid pressure, and the increased bare mass density is here modified
by the fluid pressure through an equation of state.
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Traversable Space-Time Wormholes

Sustained by the Negative

Energy Electromagnetic Field

Patrick Marquet∗

Abstract: We consider the Thorne-Morris static space-time worm-
hole, sustained by the so-called exotic matter which may produce a
huge space-time distortion to achieve hyper-fast interstellar travel.
Modifying this metric, we suggest such a particular type of matter by
means of the negative electromagnetic energy density. This possibility
relies on Maxwell’s equations, which are applied to time-varying elec-
tromagnetic fields, and synchronously time-varying electromagnetic
4-current densities. By choosing the proper phase displacements, the
time component of the electromagnetic stress-energy tensor displays
a negative energy density in part produced by the interacting elec-
tromagnetic potential superimposed onto the current density. The
positive energy part of this tensor does not make a contribution, since
it is confined at the outer vicinity of the wormhole.
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Introduction. During the last decades, many published papers were
devoted to space-time shortcuts among whom the space-time wormhole

model introduced by Thorne and Morris [1] can be selected. This con-
cept is very similar to the Einstein-Rosen bridge [2, p.198], but instead,
the wormhole connects two distinct Universes, referred to as the lower

and upper worlds. To be physically sustained, it is well-known that this
model requires a negative energy density which implies the existence of
exotic matter (as coined by Kip Thorne) and which classically violates
all energy conditions [3]. Apart from the averaged null energy condition

(ANEC), and the averaged weak energy condition (AWEC), we will be
also interested in a global energy condition [4] which is referred to as
the volume integral quantifier and which is linked to the Visser-Kar-
Dadhich (VKD) wormholes [5]. In this approach, the total (exotic)
energy is considered by performing a specific integration with respect
to the matter proper volume element, and the amount of the (global)
energy condition violations is measured when the integral becomes neg-
ative. This class of energy violations provides useful information and
in particular, it determines the optimum choice of the thickness of the
exotic matter layer threading the throat of the wormhole.

In Chapter 1, we first review the standard Lorentzian wormhole
model, and we modify the metric in order to include a particular break-
down in the shape function. This breakdown accounts for two re-
gions: the inner throat itself and an outer surrounding compact shell
that is asymptotically fading away in order to merge with the quasi-
Minkowskian Universe. Splitting the shape function into an inner region
and an outer close shell does not affect the general wormhole physics.
In Chapter 2, we investigate the possibility of using a variable electro-
magnetic field which interacts with a time-varying electric current, so
that the resulting energy-momentum tensor splits up into a positive part
and a negative part. This splitting is then required to correspond to the
wormhole shape function breakdown, so that the positive electromag-
netic free field contribution can be generated in the shell, i.e. outside
the throat, while keeping the negative energy part inside to provide the
necessary exotic matter, without violating the energy conditions.

Chapter 1. The Static Lorentzian Wormhole

§1.1. Definitions: the basic metric. In the signature +2, let us
consider a generic static space-time

ds2 = gab dx
2dxb = −e2Φ(r)dt2 + gµν dx

µdxν ,
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where we set G = c = 1. Latin indices (a, b) run from 0 to 3; Greek
indices (µ, ν, ) run from 1 to 3.

We then recall here the general static spherically symmetric worm-

hole solution

ds = −e2Φ(r) dt2 +
dr2

1− b(r)
r

+ r2
(
dθ2 + sin2θ dφ2

)
, (1.1)

where Φ(r) is related to the gravitational redshift and it is thus the so-
called redshift function, while b(r) is denoted the shape function since
it determines the shape of the wormhole.

An alternative way of expressing (1.1) is

ds = −e2Φ(r) dt2 + dl2 + r2(l)
(
dθ2 + sin2θ dφ2

)
, (1.2)

where we have set the proper radial distance

l(r) = ±
∫ r

r0

dr√
1− b(r)

r

, (1.3)

which is required to be finite everywhere.
Herein l(r) decreases from l = +∞ in the upper world, to l = 0 at

the throat, and then from 0 to −∞ in the lower world.
A first traversability condition required for the wormhole is to be

horizon-free, i.e.
gtt = −e2Φ(r) 6= 0 ,

so that Φ(r) must also be finite everywhere in the throat.
This is the standard definition.

§1.2. Definitions: the modified metric. We now bring some
slight improvement and we re-define the function b(r) as follows

b(r) = 1− tanh (bworm + bout) , (1.4)

bworm and bout are here two disjoint smooth functions of r that respec-
tively correspond to the wormhole throat, and the outside Universe.
Inside the throat bout = 0, and

b(r) = 1− tanh bworm (1.5)

remains the true characteristic of the wormhole solution.
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Outside the wormhole, bout ≫ bworm, so we have

tanh (bworm + bout) → 1 , b(r) → 0 . (1.6)

Therefore, by definition Φ(r) → 0, and the metric (1.1) reduces to
the usual spherically symmetric solution of the Minkowski space

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2θ dφ2

)
. (1.7)

Introducing such an intrinsic breakdown for b(r) enables us to main-
tain the entire mathematical construction of the wormhole through the
new metric:

ds2 = − e2Φ(r) +
dr2

1− 1−tanh (bworm+bout)
r

+ r2
(
dθ2 + sin2θ dφ2

)
. (1.8)

Through this modification, we see that the standard wormhole is
now surrounded by a shell, representing a transient region where the
shape function starts to decrease asymptotically from b(r) to 0.

The trick is here obvious:

This shell does not belong to the inner throat, but is still part of
the wormhole geometry together with its physical properties.

We will explain this particular feature for achieving our initial goal
in the final course of our theory.

§1.3. The common concept

§1.3.1. The geometric description. The space-time wormhole
classically depicted in the Thorne-Morris model is formed with a static

layer of a particular matter type threading the throat, which was coined
by the authors as exotic matter (see formal definition below).

Our viewpoint is here different: we consider a dynamical object that
actually produces the required exotic matter to create the wormhole in
which it passes through. Hence it creates this space-time distortion, as
long as needed for its travel duration.

In the first stage, due to the spherically symmetric nature of the
concept and without loss of generality, we restrict the study to the
equatorial plane θ = π

2 , and the interval at t = const, so the basic
metric reads

ds2 =
dr2

1− b(r)
r

+ r2dφ2 (1.9)

still bearing in mind b(r) = 1− tanh (bworm + bout).
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The coordinate r decreases from +∞ to a minimum value r0 corre-
sponding to the location (radius) of the wormhole throat, where
b(r0)= r0, and then it increases from r0 to +∞. The object we have in
mind can be best conceived here, as a vertical cylinder centered about
the axis z with a radius r0 that reaches the inner layer of the exotic

matter it carries along.
The reduced metric (1.9) can be embedded into a 3-dimensional

Euclidean space, it is written in cylindrical coordinates r, φ, z as

ds2 = dz2 + dr2 + r2dφ2. (1.10)

The embedded surface has equation z = z(r), and the metric of this
surface is written

ds2 =

[
1 +

(
dz

dr

)2 ]
dr2 + r2dφ2, (1.11)

from these latter two equations, we infer the slope

dz

dr
= ± 1√

r
b(r) − 1

. (1.12)

In our picture, the inner layer of the exotic matter has the mini-
mum radius r = b(r) = r0, at which the embedded surface is vertical
(the slope dz

dr → ∞). See Fig. 1.

Fig. 1: Cross-section of the created throat.

Far from the exotic matter layer, r → ∞, dz
dr → 0, the space is

asymptotically flat in accordance with (1.6).
According to (1.3), an object tunnelling through the wormhole has

a velocity v(r) passing the throat at r which is measured by a set of
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static observers located at this point:

v =
dl

e2Φ(l)dt
= ± dr√

1− b
r e2Φ(l)dt

. (1.13)

Once the travel through the created wormhole is completed, the
throat should flare out at the end of this creation. Calling r(z), the
embedding function, its inverse must satisfy the important equation at

or near the distance r0 to the exotic matter inner layer:

d2r

dz2
=
b− b′ r

2b2
> 0 , (1.14)

where the prime denotes the derivative with respect to the radial co-
ordinate r, and within the distance r0, inspection shows that the form
function b should satisfy to b′(r0) < 1.

The relation (1.14) is known as the flaring out condition.

§1.3.2. Acceleration gained by an object while traversing the
throat. In the present analysis, we will adopt a set of orthonormal
basis vectors which we regard as the proper reference frame of a col-
lection of observers remaining at rest in the coordinate system (t, and
fixed r, θ, φ).

In our case, the orthonormal basis vectors êa are expressed by

êt = e−Φ et

êr =

√
1− b

r
er

êθ =
eθ

r

êφ =
eφ

r sin θ






. (1.15)

With this particular choice, the metric components reduce to the
Minkowskian system

êaêb = ĝab = ηab = {−1, 0, 0, 0}. (1.16)

In a general basis, the four-velocity for a static observer is

ua =
dxa

dτ
=
(
ut, 0, 0, 0

)
=
[
e−Φ(r), 0, 0, 0

]
. (1.17)
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From the decomposition of the covariant derivative of ua, we can
extract its four-acceleration

aa = ua;b u
b, (1.18)

which reduces, by (1.11), to the following components (denoting the
proper time by τ)

at = 0

ar = {rtt}
(
dt
dτ

)2
= Φ′ (1− b

r

)



 , (1.19)

where ar is the non-null radial component acceleration required for
the observer to follow a geodesic inside the throat (free-fall condition).
Herein {abc} are the Christoffel symbols of the second kind.

We now revert to our orthonormal basis êa, and we express the
object’s proper reference frame in terms of the Special Relativity trans-
formation factor γ = 1√

1−v2
, as

(ê0)SR = γ êt ± γ v êr

(ê1)SR = γ êr ± γ v êr

(ê2)SR = eθ

(ê3)SR = eφ






. (1.20)

Referred to this basis, the object’s four-acceleration in its proper
reference frame is

(âa)SR = (ûa;b û
b)SR .

In the (t, r, θ, φ) coordinate frame, the object moves radially and its
acceleration is specialized to t, i.e. at = ut;ru

r − {atb}uaub.
Setting a= |a| êµ, we note that at =aet=(aêµ)et =− γ veΦ|a|, and

we finally arrive at

|a| =
[√

1− b

r
e−Φ (γeΦ)′

]
. (1.21)

If we now imagine that the object contains some humanoid crew,
the acceleration felt by the occupants should obviously not exceed an
earth-like gravity.

Therefore the expanded acceleration (âa)SR should satisfy the mag-
nitude constraint (⊕ means the Earth)

a 6 g⊕ . (1.22)
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§1.3.3. The exotic matter. Consider the Einstein tensor expressed
with our orthonormal basis êa:

Ĝab = R̂ab −
1

2
ĝabR .

In this situation, the components are greatly simplified as

Ĝtt =
b′

r2

Ĝrr = − b

r3
+ 2

(
1− b

r

)
Φ′

r

Ĝθθ =

(
1− b

r

)[
Φ′′+(Φ′)2− (b′r−b)Φ′

2r(r−b) − b′r−b
2r2(r−b)+

Φ′

r

]

Ĝφφ = Ĝθθ






. (1.23)

If we stick to Birkhoff’s theorem [6, p.157], which states that the only
vacuum solutions with (static) spherical symmetry is the Schwartzschild
solution, we are led to introduce a stress-energy tensor Tab. Then, the
field equations with a source Ĝab = 8πT̂ab induce here the sole non-zero
diagonal components of the energy-momentum tensor which classically
receive the following (but somewhat arbitrary) physical meanings

T̂tt = ρ(r) , (1.24)

T̂rr = −Ttens(r) , (1.25)

T̂θθ = T̂φφ = p(r) , (1.26)

where ρ(r) is the mass density of the layer, Ttens(r) is the radial ten-
sion (or transverse pressure) which is opposed to the radial pressure
p(r) ascribed to the mass density ρ of the special layer and which is
necessary to sustain the throat. Based on the evident proportionality
with the Einstein tensor Ĝab, the components of the energy-momentum
tensor are

ρ(r) =
1

8π

b′

r2
, (1.27)

Ttens(r) =
1

8π

[
b

r3
− 2

(
1− b

r

)
Φ′

r

]
, (1.28)

p(r) =
1

8π

(
1− b

r

)[
Φ′′+(Φ′)2− (b′r−b)Φ′

2r(r−b) − b′r−b
2r2(r−b)+

Φ′

r

]
. (1.29)
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From the center of the object to the inner layer of exotic matter,
those components reduce to

ρ(r0) =
1

8π

b′(r0)

r20
, (1.30)

Ttens(r0) =
1

8πr20
, (1.31)

p(r0) =
1

8π

1− b′(r0)

2r20

[
1 + r0Φ

′(r0)
]
, (1.32)

where b(r0) = 1− tanh (bworm).
In the classical wormhole theory, it is customary to introduce the

dimensionless function

ς =
Ttens − ρ

|ρ| , (1.33)

which is also known as the exoticity function.
Using equations (1.27) and (1.28), we find

ς =
b
r − b′ − 2r

(
1− b

r

)
Φ′

|b′| . (1.34)

Taking into account the flaring out condition (1.14), the equation
(1.33) takes the form

ς =
2b2

r |b|
d2r

dz2
− 2r

(
1− b

r

)
Φ′

|b′| , (1.35)

as ρ is finite and so is b′, while given the fact that
(
1− b

r

)
Φ′ → 0 at

the throat, we obtain the fundamental relation

ς (r0) =
(T0)tens − ρ0

|ρ0|
> 0 . (1.36)

The restriction
(T0)tens > ρ0 (1.37)

tells us that the radial tension that is required to sustain the throat,
must exceed the layer’s mass density.

This is a manifest violation of the weak energy conditions (WEC)
which states that for any timelike vector ua, we must have

Tab u
aub > 0 . (1.38)

Indeed, consider a radially moving observer inside the throat: for
a sufficiently fast velocity, in his basis (1.20), this observer measures an
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energy density given by the time component of the stress-energy tensor

T̂00 = γ2 T̂tt + 2γ2v2 T̂tr + γ2v2 T̂rr = γ2(ρ0 − Ttens) + Ttens , (1.39)

which is seen negative, thus violating the energy conditions (1.38).
If the observer is static, we have the strict condition

ρ0 < 0 . (1.40)

§1.3.4. The totally exotic matter.
We now define the averaged null energy condition (ANEC) which is

satisfied along a null curve as
∫
Tab k

akbdλ > 0 , (1.41)

where ka is a null vector and λ is a generic affine parameter.
We then consider an extended type of energy condition involving the

volume integral quantifier, which is expressed by the two inequalities
∫
Tab u

aubdV > 0 ,

∫
Tab k

akbdV > 0 , (1.42)

where the integral is performed with respect to the proper volume ele-
ment dV of the exotic matter. With the null vector k̂a = (1, 1, 0, 0), the

expression T̂ab k̂
ak̂b is given by

ρ− (T0)tens =
1

8π

(
1− b

r

)[
ln

(
e2Φ

1− b
r

)]′
. (1.43)

Performing an integration by parts

IV =

∫ [
ρ− (T0)tens

]
dV =

= − 1

8π

[
(r − b) ln

(
e2Φ

1− b
r

)]∞

r0

−
∫ ∞

r0

(1 − b′)

[
ln

(
e2Φ

1− b
r

)]
dr.

At the throat r0 = b = [1− tanh(bworm)] and far from it, the space is
asymptotically Euclidean i.e. Φ = 0, so the first part of the right-hand
side vanishes, and the (global) energy violation condition is represented
by the volume integral

IV =

∫ [
ρ− (T0)tens

]
dV = − 1

8π

∫ ∞

r0

(1 − b′) ln

(
e2Φ

1− b
r

)
dr . (1.44)
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If we now want to evaluate the radial thickness of the negative energy
layer denoted by

∆ = rE − r0 , (1.45)

we just slice out a portion of the volume integral (1.44) as

IV =

∫ [
ρ− (T0)tens

]
dV = − 1

8π

∫ rE

r0

(1− b′) ln

(
e2Φ

1− b
r

)
dr . (1.46)

In the equatorial plane representation θ = π
2 , we will use this volume

portion to insert an electromagnetic fluid circulation self-provided by
an object (space ship) that creates the wormhole for a limited duration
necessary to jump between the upper and the lower worlds.

Remark: At first glance, one might be tempted to assume an arbi-
trary small quantities of ANEC-violating matter when rE → r0, however
further analysis would show that the smaller the amount of exotic mat-
ter, the longer the traversable time as measured by external clocks.

Indeed, setting the proper distance l = −l1 in the lower world, and
l = +l2 in the upper world, (assuming γ ≈ 1), we let v = dl

dτ , so that

dτ = dl
v , and

∆t =

∫ t1

t2

dt =

∫ +l1

−l2

e−Φ(r) dl

v
=

∫ rl

r2

e−Φ(r)

v

(
1− b

r

)
dr . (1.47)

Chapter 2. Achieving the Production of Exotic-Like Matter

§2.1. The electromagnetic field contribution

§2.1.1. The physical stress-energy tensor. Due to the radially
symmetric model, Birkhoff’s theorem still apply to our modified metric
(1.6). However, this theorem does not forbid another type of energy-
momentum tensor as a source of the Einstein equations:

Gab = Rab −
1

2
gabR = 8πTab .

We will then postulate that these equations will possess another type
of energy source. Let us first consider the general electrical four-current
density

ja = µua, (2.1)

where µ is a time-varying charge density, coupled to an electromagnetic
field characterized by a four-potential Aa.
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The resulting energy-momentum tensor for the interacting system is
expressed in a general basis as

(T ab)elec =
1

4π

(
1

4
gabFcdF

cd + F aeF ·b
e·

)
+ gabjeA

e − jaAb, (2.2)

from which we extract the energy density as

(T 00)elec =
1

4π

(
1

4
FcdF

cd + F 0eF ·0
e·

)
+ jeA

e − j0A0. (2.3)

In our specially chosen orthonormal basis (1.15) , the following re-
lations hold

(T̂ 00)elec =
E2+B2

8π
+ jA , (2.4)

whereE andB are respectively the electric and magnetic field strengths
derived from the Maxwell tensor Fcd = ∂cFd − ∂dFc.

We suppose that the field potential Aa(ϕ,A) is given in the Lorentz
gauge, and we set for the three-potential A=Aβ and for the three-
current j= jβ .

Now, the key feature of our theory consists of implementing the
following decomposition equivalence:

(T̂00)elec = [(T̂ 00)elec]out + [(T̂ 00)elec]worm =
(E2+B2)

8π
+ jA . (2.5)

In this situation, the positive free radiative energy density E2+B2

8π is
de facto generated from an electromagnetic field which is located outside

the wormhole external-layer thickness (see form. 1.45):

bout > rE . (2.6)

This region is obviously the shell precisely defined by bout in the
modified metric (1.8).

The finite volume of exotic matter computed as per (1.46) in the
equatorial plane representation θ= π

2 should here contain a round-

shaped circuit (e.g. superconductive medium) wherein the time-varying
current j is circulating. In this case, the interacting term jA is ex-
hibiting its energy density inside this volume where the three-current
density j must take the angular form

jφ = µr

(
dφ

dt

)
(2.7)

with the mean radius r = rE+r0
2 .
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§2.1.2. Negative energy density of the interacting term. As
described in Maxwell’s equations, ∂aF

ab = 4πjb, the time component
of jb is just µ and the interacting term jA can be decomposed as

[(T̂ 00)elec]out =
E∇ϕ
4π

+ µϕ

[(T̂ 00)elec]worm =

(
−∇ϕ− ∂A

∂t

)
∇ϕ

4π
+ µϕ





, (2.8)

since E = −∇φ− ∂A
∂t .

In (2.8) the first term in the brackets is always negative. As to
the last term, it is made negative when the time-varying scalar charge
density µ and the scalar potential ϕ are 180◦ out of phase (method
reached by the use of phasors).

Eventually, in our coordinate basis we need only consider now the
equivalence

−
(
∇ϕ+

∂A

∂t

)
+ 4πµϕ =

b′(r0)

2r20
(2.9)

always with b(r0) = 1− tanh (bworm) and with µϕ < 0.

§2.2. The exotic matter. Reverting now to the energy density ex-
pression (1.39) expressed in the basis (1.20)

T̂00 = γ2 T̂tt + 2γ2v2 T̂tr + γ2v2 T̂rr = γ2 (ρ0 − Ttens) + Ttens ,

we remember that for a collection of static observers the energy density

T̂00 = ρ0 < 0

is seen negative to match the exoticity condition (1.36).
If we then set for the negative matter

[(T̂ 00)worm]elec ≡ ρ0 < 0 , (2.10)

we do have an adequate density mass equivalent.
The substitution (2.10) should not conflict with the other diagonal

components of the stress tensor which now correspond to

[(T̂rr)worm]elec = −(Ttens)worm(r0) , (2.11)

[(T̂θθ)worm]elec = [(T̂φφ)worm]elec = p(r0) . (2.12)

Note that the mass of the charge has been here discarded in the
Einstein field equations since we here assume that the electromagnetic
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effects greatly prevail over masses which can thus be neglected. For
example, if we use the fundamental leptonic charge which is the electron
e, its rest mass is me = 9.1091×10−31 kg. In this case, for a given three-
volume V , we consider e as a point-wise charge, and the charge density
µ is then given by

µ =
∑

i

ei δ(x− xi),

where δ(x− xi) is the known Dirac function.

All the above reasoning naturally holds for the generalized metric
(1.8) when we drop out the constant equatorial plane restriction θ= π

2 .

Concluding remarks and outlook. We have just here briefly sketch-
ed the basic principle of a theory using an electromagnetic field suitably
interacting with a time-varying current in order to produce negative
energy needed to sustain the space-time wormhole co-generation. Our
approach heavily relies on the equivalences (2.10), (2.11) and (2.12)
which certainly deserve further scrutiny.

Far reaching traversability and stability conditions are beyond the
scope of this paper, as well as additional improved models tending to re-
duce exotic matter regions. Numerical estimates for the electromagnetic
field magnitudes can also be predicted in a separate paper.

However, the story of the space-time wormhole theory does not end
here. As soon as 1988, in their famous article [7], Morris, Thorne and
Yurtsever have suggested that the traversable wormhole (if feasible)
could be used as a time machine. Briefly speaking, they consider two
nearby whormoles’ mouths labeled 1 and 2. At t = τ = 0, the mouths
1 and 2 are at rest. The mouth 2 is next given an acceleration to
reach a near-light velocity, then it reverses its motion to return to its
initial (spatial) location. From an exterior observer who measures both
mouths, the (proper) time attached to the wormhole 2 is dilated with
respect to wormhole 1’s time, which has thus aged with respect to the
second one, when it has come back to its position. As a result, at
any later time, if one is tunnelling through the mouth 1, one emerges
from the mouth 2 as though one has travelled backward in time. Of
course, the reachable past can only start from the date of creation of
the time machine. We cannot however exclude that possible advanced
civilizations have already long engineered such a concept so that they
are able to travel in a far past perhaps anterior to our human existence.

So much for the principle. There are however a wide range of further
complex constraints which are to be overcome.
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Starting from chronal domains separated from an achronal domain
by a future chronology horizon (special type of the Cauchy horizon),
Hawking [8] asserted that tunnelling high frequency electromagnetic
wave packets would pile up against the separation line and finally drive
the energy density on the boundary of the hypothetical time machine to
infinity, thus destroying this machine at the instant it was created or at
least preventing anyone outside of it from entering through it. This is
known as the chronology protection conjecture: the so-called closed time

curves (CTCs) at the chronology horizon are thus deemed a physical
impossibility. This condition is supposed to be required in order to
avoid any time paradox, a cliché which has since been strictly ruled
out by several physicists (see for instance Klinkhammer, 1992 private
communication).

Quite recently, several authors [9, 10] have thus challenged these
statements, and the physicist Li-Xin Li [11] has even rejected the Hawk-
ing conjecture. Without going into sound technicalities, it suffices to
know that the vacuum metric fluctuations (close to the Planck length
scale) produce unwanted effects on the defocusing exerted by the worm-
hole on the amplitude of any classical high-frequency waves propagating
along a null geodesic (light) following the inner walls of the wormhole
axis, thus eventually causing it to collapse.

Analyzing the total cross sections for various particles’ pair collisions
or formations (see, for example, form. 94.6 in [12], and related formal
derivation), Li has strictly demonstrated that by inserting an opaque
absorption material with a definite transmission coefficient including
any of these cross sections into the inner wall of the wormhole, the metric
fluctuations tend to zero, leading to a stable Lorentzian wormhole.

Nevertheless, and although some real positive progresses are increas-
ingly emerging, we clearly see that a deeper amount of research work
remains to be carried out, before feasible solutions can eventually be
found.
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On the Komar Energy and the Generalized

Smarr Formula for a Charged Black Hole

Inspired by Noncommutative Geometry

Alexis Larrañaga∗ and Juan Carlos Jimenez†

Abstract: We calculate the Komar energy E for a charged black
hole inspired by noncommutative geometry and identify the total mass
(M0) by considering the asymptotic limit. We also found the general-
ized Smarr formula, which shows a deformation from the well known
relation M0 −Q2

0/r+ = 2ST depending on the noncommutative scale
length ℓ.

Contents:

§1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

§2. Komar energy of the charged noncommutative black hole . . 109

§3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

§1. Introduction. There is a deep connection between gravity and
thermodynamics that has been known for a long time, from the works of
Bekenstein and Hawking [1–3] to the recent research of Padmanabhan
[4, 5]. In a thermodynamical system like Schwarzschild black hole, the
entropy S, the Hawking temperature T and energy E are related by the
first law of thermodynamics

dE = T dS , (1)

where E is identified with the Komar energy [6,7] and specifically for a
Schwarzschild black hole it equals the total mass of the black hole, M .
There is also an integral version of this equation

E =M = 2T S . (2)

known as the Smarr formula [8] and it can be verified by using the
expressions for temperature and entropy,

T =
1

8πM
, (3)

S =
A

4
= 4πM2. (4)
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Eq. (2) has been obtained in different ways [5, 9] and the Komar
energy is identified with the conserved charge associated with the Killing
vector defined at the event horizon (see for example [10]). Recently,
some generalized expressions for Smarr formula in different spacetimes
have been studied [9–11] and in particular, the Kerr-Newman black hole
with electric charge Q and angular momentum J satisfies the Smarr
relation [12]

M = 2TS + ΦHQ+ 2ΩHJ , (5)

where ΦH and ΩH are the electric potential and angular velocity at the
horizon, respectively.

As a continuation of the research in black holes inspired by non-
commutative geometry started in [13], in this paper we investigate the
specific case of a 4-dimensional spherically symmetric charged black hole
studied in [14–21]. This solution is obtained by introducing the non-
commutativity effect through a coherent state formalism [22–24], which
implies the replacement of the point distributions by smeared structures
throughout a region of linear size ℓ. We perform the analysis by obtain-
ing the Komar energy by direct integration and found the generalized
Smarr formula, which shows a deformation from the usual relation de-
pending on the noncommutative parameter ℓ.

§2. Komar energy of the charged noncommutative black hole.
Many formulations of noncommutative field theory are based on the
Weyl-Wigner-Moyal ∗-product [25–27] that lead to some important
problems such as Lorentz invariance breaking, loss of unitarity or UV
divergences of the quantum field theory. However, Smailagic and Spal-
lucci [14–18, 20] explained recently a model of noncommutativity that
can be free from the problems mentioned above. They assume that a
point-like mass M and charge Q, instead of being quite localized at a
point, must be described by a smeared structure throughout a region of
linear size ℓ. The metric for this distribution is given by [21]

ds2 = −f (r) dt2 + dr2

f (r)
+ r2dΩ2, (6)

where

f(r) = 1− 2M (r)

r
+
Q2 (r)

r2
, (7)

Q (r) =
Q0√
π

√

γ2
(
1

2
,
r2

4ℓ2

)
− r√

2ℓ
γ

(
1

2
,
r2

2ℓ2

)
+

√
2r

ℓ
γ

(
3

2
,
r2

4ℓ2

)
, (8)
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M (r) =
2M0√
π
γ

(
3

2
,
r2

4ℓ2

)
, (9)

and

γ
(a
b
, x
)
=

∫ x

0

du u
a
b
−1e−u (10)

is the lower incomplete gamma function. Considering a spatial 2-sphere
V with boundary ∂V , the Komar integral for the energy is

E (V ) =
a

16π

∮

∂V

∇µξνdΣµν , (11)

where the killing vector is ξ= ∂
∂t , dΣµν is the surface element at the

boundary and the value of constant a will be found by comparison with
the noncommutative Schwarzschild case. This is

E =
2a

16π

∮

∂V

∇µξtdΣµt , (12)

where the factor 2 appears because of the symmetry of the integrand.
The covariant derivative involved is

∇µ ξ
t = ∂µξ

t + Γt
µσξ

σ = Γt
µt , (13)

and for the noncommutative charged solution the nonvanishing connec-
tions are

Γt
rt =

− dM
dr r

2 + rM + r
2
dQ2

dr −Q2

r (r2 − 2Mr +Q2)
, (14)

Γt
tt = Γt

θt = Γt
ϕt = 0 , (15)

giving

E =
a

8π

∮

∂V

− dM
dr r

2 + rM + r
2
dQ2

dr −Q2

r3
dΣrt . (16)

The surface element corresponds to

dΣrt = −dΣtr = −r2 sin2θ dθdϕ (17)

and therefore

E = − a

8π

− dM
dr r

2 + rM + r
2
dQ2

dr −Q2

r

∮

∂V

sin2θ dθdϕ , (18)

E =
a

2

[
dM

dr
r −M − 1

2

dQ2

dr
+
Q2

r

]
. (19)
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By comparison with the Komar energy of the Schwarzschild black
hole, we shall identify a = −2. Hence, the energy of the noncommutative
charged black hole is finally given by

E =M − dM

dr
r − Q2

r
+Q

dQ

dr
. (20)

The horizons of the metric (6) can be found by setting f(r±) = 0,
i.e.

r2± − 2r±M (r±) +Q2 (r±) = 0 , (21)

which can be solved as

r± =M (r±)±
√
M2 (r±)−Q2 (r±) . (22)

The Hawking temperature is defined in terms of the surface gravity
at the event horizon by

T =
κ

2π
=

1

4π
∂rf (r)|r=r+

, (23)

which gives in this case

T =
1

2πr2
+

[
M (r+)−

Q2 (r+)

r+
− r+

dM

dr

∣∣∣∣
r=r+

+Q (r+)
dQ

dr

∣∣∣∣
r=r+

]
. (24)

The entropy in terms of the area of the horizon is given by the well
known relation

S =
A

4
= πr2

+
(25)

and therefore, the Komar energy (20) at the event horizon becomes

E = 2πr2
+
T = 2ST. (26)

Using the Reissner-Nordström values r±=M0±
√
M2

0 −Q2
0 as a first

approximation of the horizons (22) and putting them into the incom-
plete gamma functions of Eqs. (8) and (9) one obtains

r± =M± ±
√
M2

± −Q2
± (27)

where we have defined M± and Q± in Page 112.
For a large value of its argument (i.e. large masses), function ε tends

to unity while the exponential term goes to zero, giving the classical
Reissner-Nordström horizons r± → rRN± =M0 ±

√
M2

0 −Q2
0.
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 ε
(
M0 ±

√
M2

0 −Q2
0

2ℓ

)
− M0 ±

√
M2

0 −Q2
0√

πℓ
exp


−

(
M0 ±

√
M2

0 −Q2
0

)2

4ℓ2





 ,

Q± = Q0

√√√√√√ ε2

(
M0 ±

√
M2

0 −Q2
0

2ℓ

)
−

(
M0 ±

√
M2

0 −Q2
0

)2

√
2π ℓ2

exp


−

(
M0 ±

√
M2

0 −Q2
0

)2

4ℓ2


 ,

and ε (x) is the Gauss error function,

ε (x) =
2√
π

∫ x

0

e−u2

du .
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Using the same first approximation for the event horizon r+ in the
Hawking temperature (23) one obtains [29]

T ≈ 1

4π

r+ − r−
r2
+

. (28)

This approximation permits us to write the Komar energy at the
horizon, using Eqs. (26), (28) and (27), as

E = 2πr2
+
T =

r+ − r−
2

, (29)

E =
1

2

[
M+ +M− +

√
M2

+
−Q2

+
−
√
M2

− −Q2
−

]
. (30)

By considering the behavior of the functions M± and Q±, it is easy
to see that the limit of large masses of (30), as well as taking the limit
ℓ→ 0, recover the Reissner-Nordström energy while for Q0 = 0, it gives
the result of Banerjee and Gangopadhyay [28] for the noncommutative
Schwarzschild black hole with the usual E = M0. These results let us
identify the quantity M0 as the total mass of the black hole and Q0 as
its total electric charge.

With a similar procedure, the entropy can be approximated by

S = πr2
+
≈ π

(
M+ +

√
M2

+
−Q2

+

)2
, (31)

which give in the limit of large masses, or in the limit ℓ→ 0, the usual
result for the Reissner-Nordström black hole,

S → SRN = π

(
M0 +

√
M2

0 −Q2
0

)2
. (32)

Using Eqs. (8) and (9) and the property of the gamma function

∂

∂u
γ
(a
b
, u
)
= e−uu−1+ a

b (33)

to perform the derivatives, the Komar energy (20) for this spacetime
yields

E =M(r)− Q2 (r)

r
− M0

2
√
π

r3

ℓ3
e−

r2

4ℓ2 +

+
Q2

0

2π

[
2

ℓ
e−

r2

4ℓ2 γ

(
1

2
,
r2

4ℓ2

)
− 1√

2ℓ
γ

(
1

2
,
r2

2ℓ2

)
+

+

√
2

ℓ
γ

(
3

2
,
r2

4ℓ2

)
− r

ℓ2
e−

r2

2ℓ2 +

√
2

4

r3

ℓ4
e−

r2

4 ℓ2

]
. (34)
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Using the long distance approximations for the gamma functions

γ

(
3

2
,
r2

4ℓ2

)
≃

√
π

2
− r

2ℓ
e−r2/4ℓ2 , (35)

γ

(
1

2
,
r2

2ℓ2

)
≃

√
π −

√
2 ℓ

e−r2/2ℓ2

r
, (36)

γ

(
1

2
,
r2

4ℓ2

)
≃

√
π − 2ℓ

e−r2/4ℓ2

r
, (37)

we obtain finally

M0 −
Q2

0

r+
= 2TS +

M0√
π

r+
ℓ
e−

r2
+

4 ℓ2

(
1 +

r2
+

2ℓ2

)
+

+
Q2

0

πr+

[
e−

r2
+

2 ℓ2

(
5

2
+

r2
+

2ℓ2
+

4ℓ2

r2
+

)
−

− e−
r2
+

4 ℓ2

(
4
√
π
ℓ

r+
+
√
π
r+
ℓ

+

√
2

4

r2
+

ℓ2
+

√
2

8

r4
+

ℓ4

)]
. (38)

Since M0 and Q0 have been identified as the mass and charge of
the black hole, Eq. (38) corresponds to the generalization of the Smarr

formula for the noncommutative charged black hole. Note that this re-
lation deviates from the usual one (5) by the two last terms in the
right hand side, but it is clear that in the limit ℓ→ 0 these terms disap-
pear. In the case Q0 =0 we recover the relation for the noncommutative
Schwarzschild black hole presented in [28, 30, 31].

§3. Conclusion. We have computed the Komar energy for a charged
black hole inspired in noncommutative geometry and its asymptotic
limit that let us identify the constant M0 as its total mass and Q0 as
its electric charge. With these results, we obtained the noncommuta-
tive version of the Smarr formula (38) which show a deformation from
the usual relation and the new terms depend on the noncommutative
parameter ℓ.
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Lichnérowicz’s Theory of Spinors

in General Relativity:

the Zelmanov Approach

Patrick Marquet∗

Abstract: In this paper, we apply Abraham Zelmanov’s theory of
chronometric invariants to the spinor formalism, based on Lichné-
rowicz’s initial spinor formalism extended to the General Theory of
Relativity. From the classical theory, we make use of the Dirac current
which is shown to be a real four-vector, and by an appropriate choice of
the compatible gamma matrices, this current retains all the properties
of a space-time vector. Its components are uniquely expressed in terms
of spinor components, and we eventually obtain the desired physically
observable spinors in the sense of Zelmanov, next to the scalar, vector,
and tensor quantities.
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Introduction. Preliminary conventions:

— ~ = 1 and c 6= 1;

— Four-dimensional general basis eµ and numbering of the four 4×4
Dirac gamma matrices with Greek indices: µ, ν = 0, 1, 2, 3;

— Three-dimensional general basis eα with Greek indices: α, β=
=1, 2, 3;

— Four-dimensional coordinates with Latin indices: a, b, c, . . . , f =
=0, 1, 2, 3;

— Three-dimensional coordinates with Latin indices: i, j, k, l,m, . . .
. . . = 1, 2, 3;

— Spinor indices with capital Latin indices: A,B = 1, 2, 3, 4.

We first briefly recall the essence of Zelmanov’s theory: the dynamic
fundamental observer can be coupled with his physical referential sys-
tem whose general space-time possesses a gravitational field, generally
subject to rotation and deformation. Physical-mathematical quantities
(scalars, vectors, tensors) as measured in the observer’s accompanying
frame of reference, are called physically observable quantities if and only
if they result uniquely from the chronometric projection of the generally
covariant four-dimensional quantities onto the time line and the spatial
section in such a way that the new semi-three-dimensional quantities
depend everywhere on the monad vector (world-velocity): those are
known as chronometrically invariant quantities.

If the spatial sections are everywhere orthogonal to the time line, the
enveloping space is said to be holonomic. In general, the real space-time
(e.g. of the Metagalaxy) is non-homogeneous and non-isotropic, i.e. it
is non-holonomic.

Besides vectors and tensors, we intend here to derive a law setting
Zelmanov’s physically observable properties for another type of quanti-
ties, namely spinors. To achieve this, we will first follow the Lichnéro-
wicz analysis which formally defines spinors within General Relativity,
and which leads to the well-known Dirac equation for the electron in
a pseudo-Riemannian space-time. We will then infer the Dirac current

from the spinor Lagrangian, which is shown to retain all properties of a
real four-vector.

With a special choice of the gamma matrices compatible with the
regular spinor theory [1], we define the Dirac current as a space-time
vector whose components are exclusively expressed in terms of spinors.

These spinors, as they are physically observed, are thus modified
through the chronometric properties of the general space, i.e. the linear
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velocity of space rotation vi, and the gravitational force Fi, as well as
the gravitational potential w.

Three-dimensional non-holonomity and deformation of space, which
are respectively represented by the antisymmetric and symmetric chro-
nometrically invariant tensors Aik, and Dik, appear in the Christoffel
symbols’ components formulated uniquely in terms of physically ob-
servable quantities [2], which are to be part of the Riemann spinor
connection.

Accordingly, we can construct a Dirac-Zelmanov equation for the
electron interacting with a four-potentialAµ, whose chronometrically in-
variant projections (physically observable components) only apply here
to A0 .

It is essential to note that the inferred Dirac-Zelmanov equation does
also comply with the positron equation, as easily shown below.

§1. The Riemannian spinor field

§1.1. General Riemannian space-time. Let V4 be a C∞-differ-
entiable Riemann four-manifold which admits a structural group,
namely the homogeneous (or full) Lorentz group denoted by L(4).

The metric is locally written on an open neighbourhood of the man-
ifold V4 as

ds2 = gab dx
adxb, (1)

which is equivalent to writing

ds2 = ηµν θ
µθν , (2)

where ηµν is the Minkowski metric tensor : (1,−1,−1,−1).
The θµ are the four Pfaffian forms (see a formal definition of these

in Appendix) which are related to the coordinate bases by

θµ = aµa dx
a, (3)

where the aµa form the tetrad part that carries the curved space-time
properties.

We systematically refer V4 to orthonormal bases, which are the ele-
ments of a fiber space E(V4), whose structural group is the full Lorentz
group L(4).

Let now F be a matrix F∈L(4). The global orientation of the
manifold V4 is a pseudoscalar denoted by o, whose square is 1, and
which is defined, with respect to the system of frames y of E(V4), as
the component oy =±1, such that if y= y′F, we get oy =oy′oF.
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We next define the antisymmetric tensor εa1 ...a0

b1 ...b0
as follows: its com-

ponents are +1 if the upper indices’ series is an even permutation of
the series of lower indices all assumed distinct, and −1 for an odd per-
mutation, and 0 otherwise. The covariant derivative of this tensor is
zero. To simplify the notation, we may just write εa1 ...a0

1 ...0 = εa1 ...a0 ,
ε1 ...0a1 ...a0

= εa1 ...a0
.

If V4 is oriented, we set the orientable volume element tensor η
(whose covariant derivative is also zero), as

ηabcd =
√−g εabcd , ηabcd =

1√−g ε
abcd.

In a positively-oriented basis, the Levi-Civita tensor ε would have
components defined by ε0123 = 1. This amounts to a choice of orien-
tation of the four-dimensional manifold in where the orthonormal basis
eµ represents a Lorentz frame with e0 pointing toward the future and
eδ being a right-handed triad.

As a result, for two global orientations o and o′ on V4, we have
at most two total orientations o and −o, which define the orientable

volume element η as
o θ0∧ θ1 ∧ θ2 ∧ θ3 .

Now, on V4, we define the temporal orientation or time orientation

t with respect to the set y ∈ E(V4), by one component ty =±1, such
that if y = y′F, we have

ty = ty′tF

where V4 admits at most two time orientations t and −t.
Any vector e0 (e20 = 1) at x is oriented towards the future (re-

spectively the past), when the components of t with respect to the
orthonormal frames (e0 , eδ) is 1 (respectively −1).

§1.2. The gamma matrices. In what follows, Λ∗ is the complex
conjugate of an arbitrary matrix Λ, ΛT is the transpose of Λ, while Λ̃
is the classical adjoint of Λ.

Let ℜ be the real numbers set on which the vector space is defined.
This vector space is spanned by the 16 matrices

I , γµ, γµγν , γµγνγα , γµγνγαγβ , (4)

where I is the unit matrix, and the four gamma matrices are denoted by

γµ ≡ γµAB . (5)

Note that all indices are distinct here.



Patrick Marquet 121

With the tensor ηµν , we write the fundamental relation

γµγν + γνγµ = −2ηµν I , (6)

which is verified by the gamma matrices, with the following elements

γ0 = γ0 = i















0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0















−γ1 = γ1 = i















0 0 0 +1

0 0 +1 0

0 −1 0 0

−1 0 0 0















−γ2 = γ2 = i















0 0 0 −1

0 0 +1 0

0 +1 0 0

−1 0 0 0















−γ3 = γ3 = i















0 0 +1 0

0 0 0 −1

−1 0 0 0

0 +1 0 0




















. (7)

This system of matrices is also called a standard representation, as
opposed, for example, to the Majorana representation [3, p. 108], or to
the usual spinorial representation.

We note that
γ̃µ = −ηµµγµ (8)

and also

det(γµ) = 1 , tr(γµ) = 0 , tr(γµγν) = 0 , tr(γµγνγσ) = 0

for µ 6= ν 6= σ, etc.

§2. The spinor concept

§2.1. The isomorphism p. We shortly recall the definition of the
spin group Spin(4) which is said to be the covering of L(4). The pro-
jection p of Spin(4) onto L(4) is such that if

A = (Aµ′

ν ) = pΛ , A ∈ L(4) , Λ ∈ Spin(4)
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we must have
ΛγµΛ

−1 = Aν′

µ γν′ ,

where p is regarded as the isomorphism of the spin group S(4) on the
Lorentz group L(4).

In view of expressing the spinors as physically observable quantities,
one could start with the regular Riemannian line-element

ds2 = gab dx
adxb,

which becomes in Zelmanov’s theory

ds = c2dτ2 − dσ2,

where

dτ =
√
g00 dt+

1

c

g0 idx
i

√
g00

,

dσ2 = hik dx
idxk

and
hik = −gik +

g0 i g0k
g00

.

(See [4], formula 1.29, in accordance with formula 84.6 of §84 [5].)
Hence considering hiµh

µ
k = δik, one could then start by writing the

physically observable Dirac matrices as simply verifying the relation

γiγk + γk γi = −2δik I

but the matrix γ0 (x) is omitted and the isomorphism p can no longer
apply.

Therefore, writing the Pfaffian interval as ds2 = ηµν θ
µθν allows us

to preserve this isomorphism, which is the fundamental feature of any
relativistic spinor theory. Like in the classical treatment, we thus main-
tain the relation (6), so that the gamma matrices are kept non-local.
Proceeding with the Lichnérowicz formalism, we shall see that there is
another way to obtain the spinors as unique observable quantities within
Zelmanov’s theory.

§2.2. Spinor definitions. From E(V4), we define a principal fiber
space denoted by S(V4) whose each point z represents a general spinor
frame: at this stage, it is essential to understand that Spin(4) is here its
structural group. V4 is therefore a vector space of 4×4 matrices with
complex elements, which is acted upon by the Spin(4) group [6].
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Let us denote by π the canonical projection of S(V4) onto V4, and
p the projection of S(V4) onto E(V4), so that a tensor of V4 is referred
to its frame by y = pz.

The contravariant 1-spinor ψ at x ∈ V4 is defined as a mapping
z → ψ(z) of π−1(x) onto V4.

The covariant 1-spinor φ at x is a mapping z → φ(z) of π−1(x) onto
the space V4, dual to V4.

The contravariant 1-spinor ψ forms a vector space Sx on the complex
numbers, whereas the covariant 1-spinor forms the vector space S′x
dual to Sx. The contravariant 1-spinor ψ has also its covariant 1-spinor
counterpart expressed by

ψ̄ = tψ̃ β , (9)

which is classically known as the Dirac conjugate, also expressed by

ψ̄ = ψ∗γ0 (10)

with t = +1. Herein, β is a matrix defined below in (12).
Conversely, any covariant 1-spinor φ is now the image of the con-

travariant 1-spinor tβφ.

§2.3. The charge conjugation and the adjoint operation. An
antilinear mapping C of Sx onto itself exists. It maps a 1-spinor ψ to
another 1-spinor such as

C : ψ −→ ψC = ψ∗.

We readily see that C2 = Identity(ψ → ψ), while C is known as the
charge conjugate operation.

In particular, the charge conjugate of the covariant 1-spinor φ is

Cφ = ψ∗

hence
(Cφ, ψ) = (φ,Cψ)∗.

The relation (6) results from the identity (uµγµ)
2 =−(uµuνηµν)I,

where uµ ∈ C (complex numbers), thus from (8) we find

γ0 γµγ
−1
0 = − γ̃µ . (11)

Introducing now the real matrix β = iγ0 which verifies β2 = I, the
important relation can be derived from (10)

βγµβ
−1 = − γ̃µ . (12)
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By defining an antilinear mapping A of Sx onto S′x as

A : ψ −→ ψ̄ = tψ̃ β (13)

we have the Dirac adjoint operation A.
We now consider a contravariant 1-spinor ψ which satisfiesCψ = ψ∗.

Thus
ACψ = tψTβ .

On the other hand, Aψ = tψ̃β, from which we infer

CAψ = tψT,

i.e. CAψ=− tψTβ. Therefore

ACψ = −CAψ.

The Dirac adjoint operator and the charge conjugation anticommute

on the 1-spinors [7].

§3. The Riemannian Dirac equation

§3.1. The spinor connection. In order to write the Schrödinger
equation under a relativistic form, Dirac introduced a four-component
wave function ψA (see [8] and [9, p. 252]) expressed with the gamma

matrices. In the classical theory, the expression γµAB ∂µ is known as the
Dirac operator, and it is customary to omit the spinor indices A,B by
simply writing γAµB so as to get γµ∂µ.

In a Riemannian situation, the derivative ∂µ becomes Dµ with a
Riemannian spinor connection defined as follows:

N = − 1

4
Γµνγµγν = − 1

4
Γµ
νγµγ

ν. (14)

Within a neighbourhood U of E(V4), we define a connection 1-form
Γ that is represented by either of the two matrices Γµ

ν or Γµν , and whose
elements are linear forms.

The matrix N defines the spinor connection corresponding to Γ.
The elements of N are given by the local 1-forms

NA
B = − 1

4
Γµ
ν γ

A
νC γ

νC
B .

By means of the Riemannian connection Γµ
να with respect to the

frames in U, the corresponding coefficients of N are written

NA
Bα = − 1

4
Γµ
να γ

A
µC γ

νC
B . (15)



Patrick Marquet 125

§3.2. The Riemannian Dirac operators and subsequent Dirac
equation. Some inspection shows that the absolute differential of the
gamma matrices is given by

D γµ = dγµ + Γµ
νγ

ν + (Nγµ − γµN) (16)

and this differential is shown to be zero. With (15) it can also be inferred
that the covariant derivative of a spinor ψA is

Dµψ
A = ∂µψ

A +NA
Bµψ

B (17)

and for the covariant 1-spinor φ

Dν φA = ∂νψA −NB
AνψB .

Introducing now the Riemannian Dirac operators W and W̄ as

Wψ = γµDµψ , W̄φ = −Dµφγ
µ (18)

for a massive spin- 12 -field, the Riemannian Dirac equations [10] are writ-
ten as

(W −m0c)ψ = 0 , (19)
(
W̄−m0c

)
φ = 0 , (20)

where the rest mass m0 is usually attributed to the associated particle.
Classically, the Dirac massive equation is always written with the

contravariant 1-spinor ψ, satisfying the free field equation (19) (no ex-
ternal interacting field).

In accordance with our previous results, the Dirac adjoint ψ̄ thus
satisfies (

W̄−m0c
)
ψ̄ = 0 . (21)

§3.3. The Dirac current vector density. In order to obtain the
physically observable spinor quantities we are aiming at, we first de-
fine a space-time vector which is entirely expressed through the spinor
formulation. For this purpose, we will rely on the Dirac current vec-
tor which is formally inferred from the Dirac Lagrangian of a massive
fermion field. Such a Lagrangian is shown to be [11]

LD =
1

2

[
ψ̄ γµDµψ − (Dµ ψ̄)γ

µψ
]
−m0c ψ̄ψ . (22)

An alternative formula is given by

LD = ψ̄ (γµ −m0c)ψ.

Since these forms differ only by a divergence which vanishes at infin-
ity, they generate the same action and correspond to the same physics.
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Following Noether’s theorem, we now apply the invariance rule to
LD (22) upon the global transformations (where U is a positive scalar).

ψ −→ eiUψ, ψ̄ −→ ψ̄ e−iU

for linear transformations of ψ, the respective Lagrangian variation is

δLD = i ψ̄ γµψDµ δU = Dµ

(
i ψ̄ γµψ δU

)
−Dµ

(
i ψ̄ γµψ

)
δU

from which we expect to infer a current density (jµ)D through a classical
action variation

δSD = −
∫

Dµ(j
µ)D δUη , (23)

where we have set
(jµ)D = i ψ̄ γµψ . (24)

If ψ is a solution of the Dirac field equations (19), δSD vanishes for
any δU , so

Dµ(j
µ)D = 0 . (25)

Thus we have defined the conserved Dirac current vector density

(jµ)D which is a real vector. To prove this, we write (jµ)D with the aid
of (12)

(jµ)D = itψ̃β γµψ .

Applying the usual adjoint operation (jµ)∗D = −itψ̃ γ̃µβψ and tak-
ing into account γ̃µβ = −βγµ, we eventually find

(jµ)∗D = itψ̃ γµψ = i ψ̄ γµψ = (jµ)D (26)

which concludes the demonstration.

§4. The Dirac-Zelmanov equation

§4.1. The unique physically observable spinor. We shall now
suggest a way to express the 1-contravariant spinor through the charac-
teristics of Zelmanov’s formalism of General Relativity and Riemannian

geometry (i.e. the theory of chronometric invariants).
Consider the monad world-vector

bµ =
dxµ

ds
. (27)

According to Zelmanov’s theorem, for any vector Qµ, two quantities
are physically observable:

bµQµ =
Q0√
g00

(28)
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and
hiµQ

µ = Qi. (29)

At first glance, all one would have to do, is simply replaceQµ with jµ.
However, in this case, we readily see that Q0 (or j0 ) must differ from
Q0 (or j0 ) which seems to contradict the matrix definition for γ0 (7).
Therefore, we will tackle the problem in a different manner.

With the aid of the standard gamma matrices (7), the components
of jµ are easily derived:

j0 = t
(
ψ1ψ1∗ + ψ2ψ2∗ + ψ3ψ3∗ + ψ4ψ4∗)

j1 = −t
(
ψ2ψ1∗ + ψ1ψ2∗ − ψ4ψ3∗ − ψ3ψ4∗)

j2 = −it
(
ψ2ψ1∗ − ψ1ψ2∗ − ψ4ψ3∗ + ψ3ψ4∗)

j3 = −t
(
ψ1ψ1∗ − ψ2ψ2∗ − ψ3ψ3∗ + ψ4ψ4∗)





. (30)

The vector jµ retains all the space-time properties as j0 is shown
to lie within the (future) half-light cone for t = +1. Analogously, the
vector j can be isotropic in which case jµjµ must be zero.

Like in the Riemannian picture, we make explicit jµjµ as follows:

jµjµ = (j0 )2 − (ji)2 = (j0 )2 − jiji . (31)

Then, we remark that (31) is formally similar to Zelmanov’s expres-
sion for an arbitrary vector Aµ

AµAµ = a2 − aiai = a2 − hik a
iak (32)

setting jµ = Aµ, we then have

a =
j0√
g00

, (33)

ai = ji, (34)
with

j0 =
a+ via

i

c

1− w
c2

, ji = −ai −
via

c
, (35)

where vi =− cg0i√
g00

is the linear velocity of space rotation, while w=

= c2(1−√
g00 ) is the gravitational potential.

Thus, we see that the only combination of the observable spinor
components are (with t = +1, see above)

t
(
ψ1ψ1∗ + ψ2ψ2∗ + ψ3ψ3∗ + ψ4ψ4∗) =

a+ via
i

c

1− w
c2

. (36)
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We have now reached our goal by linking the first spinor combination
of (30) with relations (34) and (36), i.e. we have found the unique
physically observable spinors. This mathematical approach also enables
us to note that j0 and j0 have distinct expressions within the framework
of Zelmanov’s theory.

§4.2. The Zelmanov spinor connection. Consider now the Rie-
mannian connection coefficients Γµ

να which are just the Christoffel sym-
bols (i.e. Levi-Civita connection) with respect to any coordinate basis.

We define the Zelmanov spinor connection as

(
NA

Bα

)
Zel

= − 1

4
(Γµ

να)Zel γ
A
µC γ

νC
B . (37)

The components of the (Γµ
να)Zel have been deduced by Zelmanov as

the unique physically observable quantities

Γ0
00 = − 1

c3

[
1

1− w

c2

∂w

∂t
+
(
1− w

c2

)
vkF

k

]
,

Γk
00 = − 1

c2

(
1− w

c2

)2
F k,

Γ0
0 i =

1

c2

[
− 1

1− w

c2

∂w

∂xi
+ vk

(
Dk

i +A·k
i· +

1

c2
viF

k

)]
,

Γk
0 i =

1

c

(
1− w

c2

)(
Dk

i +A·k
i· +

1

c2
viF

k

)
,

Γ0
ij = − 1

c
(
1− w

c2

)
{
−Dij +

1

c2
vn ×

×
[
vj
(
Dn

i +A·n
i·
)
+ vi

(
Dn

j +A·n
j·
)
+

1

c2
vivjF

n

]
+

+
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

2c2
(
Fivj + Fj vi

)
−∆n

ij vn

}
,

Γk
ij = ∆k

ij−
1

c2

[
vi
(
Dk

j +A
·k
j·
)
+ vj

(
Dk

i +A
·k
i·
)
+

1

c2
vivjF

k

]
.

where

∆i
jk =

1

2
him

(∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)
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are the chronometrically invariant Christoffel symbols, for which the
fundamental differential operator is

∗∂

∂xi
=

∂

∂xi
− g0 i
g00

∂

∂x0
.

Associated with the global non-holonomic vector vi, Zelmanov’s an-
gular momentum tensor Aik — ultimately characterizing the space as
non-holonomic and non-isotropic — is given by

Aik =
1

2

(
∂vk
∂xi

− ∂vi
∂xk

)
+

1

2c2
(Fivk − Fkvi) .

Here

Dik =
1

2
√
g00

∂hik
∂t

is the space deformation tensor and

Fi =
1

1− w
c2

(
∂w

∂xi
− ∂vi

∂t

)

is the gravitational inertial force vector.

§4.3. The massive Dirac field interacting with an electromag-
netic field. Let us consider here the Lagrangian for a charged Dirac
massive field coupled with a potential Aµ

L(ψ, Aµ) = L(ψ) + L(Aµ)− eψAµ(j
µ)D

the coupling constant e is taken as a negative charge (i.e. the electron).
Taking into acccount the expression of the Dirac current density

(jµ)D = i(ψ̄ γµψ) (38)

we shall evaluate the variation of the Lagrangian L(ψ,Aµ).
After a simple but lengthy calculation, we obtain (omitting D in j)

δL(ψ,Aµ) =
[
δ ψ̄
(
γµ (Dµ − ieAµ)ψ̄ −m0cψ

)]
+

+
[(
−(Dµ + ieAµ)ψ̄ γ

µ −m0cψ
)
δψ
]
+

+
[
−Dν (DνAµ −DµAν)− ejµ

]
δAµ + divergence term. (39)

Extremalizing the action defined from L(ψ,Aµ), we get two (mas-
sive) field equations

γµ (Dµ − ieAµ)ψ = m0cψ , (40)

−(Dµ + ieAµ)ψ̄ γ
µ = m0cψ̄ , (41)
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and
δdA = ej . (42)

Under the conjugate operation, the following transformation

ψ −→ ψ(c)

takes a place, and the first equation (40) becomes

γµ (Dµ + ieAµ)ψ(c) = m0cψ(c) (43)

and it is interpreted as the positron equation which accounts for the anti-
electron or positron with a positive charge, when ψ(c) is substituted into
ψ. Thus, in equation (43), the rest mass m0 represents the positron.

Within the Zelmanov picture, the Dirac equation (40) will be uni-
quely written as

γµ
[
(Dµ)Zel − ie(Aµ)Zel

]
ψ′ = m0cψ

′ , (44)

where ψ′ is the modified spinor according to (36) and (Dµ)Zel is the
spinor derivative constructed from the components of (37).

As regards the four-potential (Aµ)Zel, we have the following compo-
nents

A0 = bµAµ
√
g00 . (45)

This scalar potential is a chronometrically invariant quantity, with
the associated vector components:

Ai = −hikAk − A0 vi
c
√
g00

. (46)

Concluding remarks. There is no ambiguity neither any loss of gen-
erality regarding the special choice of gamma matrices (7), as long as
they verify the fundamental relation (6). Therefore, assuming that the
inferred Dirac current is a space-time vector is here legitimate all the
more as this vector can be isotropic.

Based on this weak constraint, it has thus been possible to express
the contravariant 1-spinor ψ (or its combination) in terms of the gravi-
tational potential w and the linear velocity of space rotation vi.

The Dirac-Zelmanov equation for a massive field completes the scope
of the theory by implicitly displaying the non-holonomity and non-

isotropy tensor Aik and the tensor of deformation of space Dik through
the Zelmanov spinor connection.

In equation (44), the electron and its rest mass m0 are constant and
are independent of the observer, so even when the contravariant 1-spinor
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ψ is modified when viewed in the observer’s physical frame, the positron
equation (43) should also be true in Zelmanov’s theory.

But above all, the most salient feature of the present theory certainly
lies in that the Zelmanov theory entirely confirms the way Lichnérowicz
approached the spinor analysis in General Relativity.

It is indeed remarkable to note that the observable spinor formula-
tion requires the fundamental relation (6) to be maintained.

Any other current attempts to write down (6) as

γa(x)γb(x) + γb(x)γa(x) = −2gab I ,

where γa(x) = aµa(x)γµ are the mere local generalization of the gamma
matrices (see for instance [11, p. 25] or [12, p. 515]), can be definitely
ruled out.

It also means that the adopted metric form ds2 = ηµν θ
µθν clearly

appears to be the right choice for describing the spinor in General Rel-
ativity.

This is certainly the essential result of our short study, as it dramat-
ically shows that the chronometric (physically observable) properties of
Zelmanov are equivalent to a pure mathematical analysis (Lichnérowicz)
in perfect harmony with quantum theory (Dirac) and resulting experi-
mental data (i.e. existence of the positron).

Appendix. In mathematics, a vector cannot in general be considered
as an arrow connecting two points on the manifold M [14]. A tangent
vector V along a curve γ(t) at p, is considered as an operator (linear
functional) which assigns to each differential function f on M, a real
number V (f).

This operator satisfies the axioms:

Axiom I: V (f + h) = V (f) + V (h),

Axiom II: V (f h) = hV (f) + f V (h),

Axiom III: V (cf) = cV (f), where c = constant.

One shows that such a tangent vector can be expressed by

V = V a ∂

∂xa
,

where the real coefficients V a are the components of V at p, with re-
spect to the local coordinates (x1, . . . , x4) in the neighbourhood of p.
Accordingly, the directional derivatives along the coordinates lines at p
form a basis of the four-dimensional vector space whose elements are
the tangent vectors at p, i.e. the tangent space Tp.
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The basis ( ∂
∂xa ) is called a coordinate basis. On the contrary, a

general basis eν is formed by four linearly independent vectors eν ; any
vector V ∈ Tp is a linear combination of these basis vectors:

V = V αeα .

By definition, a 1-form (Pfaffian form) ζ maps a vector V into a
real number, with the contraction denoted by the symbol <ζ,V >, and
this mapping is linear.

The four linearly independent 1-forms θµ which are uniquely deter-
mined by

<θµ, eν> = δµν

form a general basis of the dual space T∗
p to the tangent space Tp. This

basis is said to be dual to the basis e of Tp. The bases eν , θ
µ are linear

combinations of coordinates bases:

eν = baν

(
∂

∂xa

)
, θµ = aµadx

a.
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Earth Flyby Anomalies Explained by

a Time-Retarded Causal Version

of Newtonian Gravitational Theory

Joseph C. Hafele∗

Abstract: Classical Newtonian gravitational theory does not satisfy
the causality principle because it is based on instantaneous action-at-
a-distance. A causal version of Newtonian theory for a large rotating
sphere is derived herein by time-retarding the distance between inte-
rior circulating point-mass sources and an exterior field-point. The
resulting causal theory explains exactly the Earth flyby anomalies
reported by NASA in 2008. It also explains exactly an anomalous
decrease in the Moon’s orbital speed. No other known theory has
been shown to explain both the flyby anomalies and the lunar orbit
anomaly.
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Introduction. It has long been known that electromagnetic fields
propagate at or near the vacuum speed of light. The actual speed
of light depends on whether the field is propagating in a vacuum or
in a material medium. In either case, to calculate the electromagnetic
fields of a moving point-charge, the concept of “time retardation” must
be used [1]. The causality principle indicates that the “effect” of a
“causal” physical field requires a certain amount of time to propagate
from a point-source to a distant field-point. Classical Newtonian the-
ory is “acausal” because the Newtonian gravitational field is based on
instantaneous action-at-a-distance [2].

Gravitational fields are believed to propagate in empty space with
exactly the same speed as the vacuum speed of light [3]. In 1898 the
speed of the Sun’s gravitational field was found by a high school math
teacher, P. Gerber, by calculating what it would need to be to cause
the (in 1898) “anomalous” advance of the perihelion of Mercury [4].
Gerber’s value, 3.05500×108m/s, is about 2% greater than the vacuum
speed of light. In 2002 a group of radio astronomers measured the
speed of Jupiter’s gravitational field by detecting the rate of change
in the gravitational bending of radio waves from a distant quasar as
the giant planet crossed the line-of-sight [5]. They concluded that the
speed of Jupiter’s gravitational field is 1.06± 0.21 times the vacuum
speed of light. These results suggest that the speed of propagation of
the gravitational field near a massive central object may not be exactly
the same as the vacuum speed of light.

The first terrestrial measurement that proved a connection between
gravity and light, the gravitational red-shift, was carried out by
R.V. Pound and G.A.Rebka in 1959 [6]. In 1972 J.C.Hafele and
R.E.Keating reported the results of their experiments which detected
the relativistic time dilation and the gravitational red-shift for preci-
sion clocks flown around the world using commercial jet flights [7]. This
experiment showed conclusively that clocks at a deeper gravitational
potential run slower and that moving clocks run slower. It also showed
that the Sagnac effect [8], which originally was for electromagnetic fields,
also applies to gravitational fields. To correct for these relativistic ef-
fects, the precision clocks used in the GPS system are adjusted before
they are launched into space [9].

In 2008 Anderson et al. [10] reported that anomalous orbital-energy
changes have been observed during six spacecraft flybys of the Earth.
The reported speed-changes range from +13.28mm/s for the NEAR
flyby to −4.6mm/s for the Galileo-II flyby. Anderson et al. state in
their abstract:
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“These anomalous energy changes are consistent with an empir-
ical prediction formula which is proportional to the total orbital
energy per unit mass and which involves the incoming and out-
going geocentric latitudes of the asymptotic spacecraft velocity
vectors.”

Let the calculated speed-change be designated by δvemp. The em-
pirical prediction formula found by Anderson et al. can be expressed as
follows

δvemp =
2veq
c

vin (cosλin − cosλout) =

= − 2veq
c

vin

∫ tout

tin

sin
(
λ(t)

) dλ
dt

dt , (1.1)

where veq is the Earth’s equatorial rotational surface speed, c is the
vacuum speed of light, vin is the initial asymptotic inbound speed, λin is
the asymptotic inbound geocentric latitude, and λout is the asymptotic
outbound geocentric latitude. If t is the observed coordinate time for
the spacecraft in its trajectory, then λin=λ(tin) and λout =λ(tout). If
dλ/dt = 0, then δvemp=0. An order of magnitude estimate for the
maximum possible value for δvemp is 2(5×102/3×108)vin ∼ 30mm/s.

The following is a direct quote from the conclusions of Anderson
et al. (the ODP means the Orbit Determination Program):

“Lämmerzahl et al. [11] studied and dismissed a number of pos-
sible explanations for the Earth flyby anomalies, including Earth
atmosphere, ocean tides, solid Earth tides, spacecraft charging,
magnetic moments, Earth albedo, solar wind, coupling of Earth’s
spin with rotation of the radio wave, Earth gravity, and relativis-
tic effects predicted by Einstein’s theory. All of these potential
sources of systematic error, and more, are modeled in the ODP.
None can account for the observed anomalies.”

The article by Lämmerzahl et al. [11], which is entitled “Is the physics
within the Solar system really understood?”, was published in 2006.

A direct quote from the abstract for a more recent article, one pub-
lished in 2009 by M.M.Nieto and J.D. Anderson, follows [12]:

“In a reference frame fixed to the solar system’s center of mass, a
satellite’s energy will change as it is deflected by a planet. But a
number of satellites flying by Earth have also experienced energy
changes in the Earth-centered frame — and that’s a mystery.”

Nieto and Anderson then conclude their article with the following com-
ments:
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“Several physicists have proposed explanations of the Earth flyby
anomalies. The least revolutionary invokes dark matter bound
to Earth. Others include modifications of special relativity, of
general relativity, or of the notion of inertia; a light speed anomaly;
or anisotropy in the gravitational field — all of those, of course,
deny concepts that have been well tested. And none of them have
made comprehensive, precise predictions of Earth flyby effects.
For now the anomalous energy changes observed in Earth flybys
remain a puzzle. Are they the result of imperfect understandings
of conventional physics and experimental systems, or are they the
harbingers of exciting new physics?”

When the article by Nieto and Anderson was published, “conventional”
or “mainstream” physics had not resolved the mystery of the Earth flyby
anomalies. It appears that a new and possibly unconventional theory is
needed.

The empirical prediction formula (1.1) found by Anderson et al. is
not based on any mainstream theory of physics (it was simply “picked
out of the air”). However, the empirical prediction formula is remark-
ably simple and gives calculated speed-change values that are surpris-
ingly close to the observed speed-change values. The empirical predic-
tion formula gives three clues for that which must be satisfied by any
theory that is developed to explain the flyby anomaly:

1) the theory must produce a formula for the speed-change that is
proportional to the ratio veq/c,

2) the anomalous force acting on the spacecraft must change the λ-
component of the spacecraft’s velocity, and

3) it must be proportional to vin.

The objective of this article is threefold:

1) derive a new causal version of classical acausal Newtonian theory,

2) show that this new version is able to produce exact agreement with
all six of the anomalous speed-changes reported by Anderson et

al., and

3) show that it is also able to explain exactly the “lunar orbit anom-
aly”, an anomalous change in the Moon’s orbital speed which will
be described below.

This new version for Newtonian theory uses only mainstream physics:

1) classical Newtonian theory, and

2) the causality principle which requires time-retardation of the grav-
itational force.
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It also satisfies the three requirements of the empirical prediction for-
mula.

This article proposes a simple correction that converts Newton’s
acausal theory into a causal theory. The resulting causal theory has a
new, previously overlooked, time-retarded transverse component, des-
ignated gtrt, which depends on 1/cg, where cg is the speed of gravity,
which approximately equals the speed of light. The new total gravita-
tional field for a large spinning sphere, g, has two components, the stan-
dard well-known classical acausal radial component, gr, and a new rela-
tively small previously undetected time-retarded transverse vortex com-
ponent, gtrt. The total vector field g= gr +gtrt. The zero-divergence
vortex transverse vector field gtrt is orthogonal to the irrotational radial
vector field gr.

This new vector field is consistent with Helmholtz’s theorem, which
states that any physical vector field can be expressed as the sum of
the gradient of a zero-rotational scalar potential and the curl of a zero-
divergence vector potential [13, p. 52]. This means that gr can be de-
rived in the standard way from the gradient of a scalar potential, and
gtrt can be derived from the curl of a vector potential, but gtrt cannot
be derived from the gradient of a scalar potential.

The time retarded gravitational fields for a moving point-mass can be
derived by using the slow-speed weak-field approximation for Einstein’s
general relativity theory. Let ϕ be the time-retarded scalar potential, let
e be the time-retarded “gravitoelectric” acceleration field, let a be the
time-retarded vector potential, and let h be the time-retarded “gravit-
omagnetic” induction field. It is shown in §2 that the formulas for ϕ,
e, a, and h, have been derived by W.Rindler in his popular textbook,
Essential Relativity [14]. They are as follows

ϕ = G

∫∫∫ [ ρ
r′′

]
dV, a =

G

c

∫∫∫ [ρu
r′′

]
dV

e = −∇ϕ , h = ∇× 4a





, (1.2)

where ρ is the mass-density of the central object, u is the inertial velocity
of a source-point-mass which is held solidly in the central rotating object
by nongravitational forces (inertial velocity means the velocity in an
inertial frame), r′′ is the vector distance from a source-point-mass to
the field-point, the square brackets denote that the enclosed value is
to be retarded by the light travel time from the source-point to the
field-point, and dV is an element of volume of the central body.

Let the origin for an inertial (nonrotating and nonaccelerating)
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frame-of-reference coincide with the center-of-mass of a contiguous cen-
tral object. Let r′ be the radial vector from the origin to a source-
point-mass in the central object, and let r be the radial vector from
the origin to an external field-point, so that the vector distance from
the source-point to the field-point r′′ = r− r′. The triple integrals in
(1.2) indicate that the retarded integrands [ρ/r′′] and [ρu/r′′] are to be
integrated over the volume of the central object at the retarded time.

Let m be the mass of a test-mass that occupies the field-point at
r, and let v be the inertial velocity of the test mass. The analogous
Lorentz force law, i.e., the formula for the time-retarded gravitational
force F acting on m at r, is [14]

F = −m

(
e+

1

c
(v × h)

)
= −m∇

(
G

∫∫∫ [ ρ
r′′

]
dV

)
−

–m

(
v ×

(
∇×

(
4G

c2

∫∫∫ [ρu
r′′

]
dV

)))
. (1.3)

This shows that Rindler’s time-retarded version for the slow-speed weak-
field approximation gives a complete stand-alone time-retarded solution.
The time-retarded fields were derived from general relativity theory, but
there is at this point no further need for reference to the concepts and
techniques of general relativity theory. Needed concepts and techniques
are those of classical Newtonian theory.

Furthermore, Rindler’s version satisfies the causality principle be-
cause the fields are time-retarded. It is valid as a first order approxi-
mation only if

v2 ≪ c2, u2 ≪ c2,
GM

r
= |ϕ| ≪ c2, (1.4)

where M is the total mass of the central object.
Notice in (1.3) that the acceleration caused by the gravitoelectric

field e is independent of c, but the acceleration caused by the grav-
itomagnetic induction field h is reduced by the factor 1/c2. The nu-
merical value for c is on the order of 3×108m/s. If the magnitude
for e is on the order of 10m/s2 (the Earth’s field at the surface), and
the magnitudes for u and v are on the order of 104m/s, the relative
magnitude for the acceleration caused by h would be on the order of
10×4(104/3×108)2 m/s

2 ∼ 10−8m/s2. This estimate shows that, for
most slow-speed weak-field practical applications in the real world, the
acceleration caused by h is totally negligible compared to the accelera-
tion caused by e.

The empirical prediction formula (1.1) indicates that the flyby speed-
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change is reduced by 1/c, not by 1/c2, which rules out the gravitomag-
netic induction field h as a possible cause for the flyby anomalies. The
acceleration of the gravitomagnetic field is simply too small to explain
the flyby anomalies.

Consequently, if the gravitomagnetic component is ignored for being
negligible, the practicable version for Rindler’s Lorentz force law (1.3)
becomes the same as a time-retarded version for Newton’s well-known
inverse-square law

F = −Gm∇

∫∫∫ [ ρ
r′′

]
dV, (1.5)

where F is the time-retarded gravitational force acting on m.
Let d3F be the time-retarded elemental force of an elemental point-

mass source dm′ at r′. With this notation, the time-retarded version
for Newton’s inverse-square law becomes

d3F = −Gm
dm′

r′′2
r′′

r′′
, (1.6)

where r′′/r′′ is a unit vector directed towards increasing r′′. The nota-
tion d3F indicates that the differential element of force must be inte-
grated over 3-dimensional space to get the total force.

By definition, the gravitational field of a point-source dm′ at r′ is
the gravitational force of the source that acts on a test-mass of mass m
at r per unit mass of the test-mass.

The traditional symbol for the Newtonian gravitational vector field is
g. Therefore, the formula for the time-retarded elemental gravitational
field d3g of an elemental point-mass-source dm′ at r′ for a field-point
at r occupied by a test-mass of mass m becomes

d3g =
d3F

m
= −G

dm′

r′′2
r′′

r′′
. (1.7)

The negative sign indicates that the gravitational force is attractive.
Let ρ(r′) be the mass-density of the central object at r′. Then

dm′ = ρ(r′) dV. (1.8)

The resulting formula for the elemental gravitational field d3g, which
consists of the radial component d3gr and the transverse component
d3gtrt, becomes d3g= d3gr + d3gtrt. The formula for each component
becomes

d3gr = −G
dm′

r′′2

(
r′′

r′′

)

r

, d3gtrt = −G
dm′

r′′2

(
r′′

r′′

)

trt

, (1.9)
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where (r′′/r′′)r is the radial component of the unit vector and (r′′/r′′)trt
is the transverse component of the unit vector. The total field is ob-
tained by a triple integration over the volume of the central object at
the retarded time.

The triple integral is rather easy to solve by numerical integration
(such as by using the integration algorithm provided in Mathcad15) if
the central object can be approximated by a large spinning isotropic
sphere. To get a good first approximation for this article, the Earth is
simulated by a large spinning isotropic sphere. It is shown in §3 that
the triple integration for gtrt leads to the necessary factor 1/cg, where
cg is the speed of propagation of the Earth’s gravitational field.

It is also shown in the forthcoming §3 that the formula for the mag-
nitude of gtrt is

gtrt(θ) = −G
IE
r4E

veq
cg

Ωφ(θ)− ΩE

ΩE
cos2

(
λ(θ)

)
PS
(
r(θ)

)
, (1.10)

where G is the gravity constant, IE is the Earth’s spherical moment of
inertia, rE is the Earth’s spherical radius, ΩE is the Earth’s spin an-
gular speed, veq is the Earth’s equatorial surface speed, cg is the speed
of propagation of the Earth’s gravitational field, θ is the spacecraft’s
parametric polar coordinate angle in the plane of the orbit or trajec-
tory (Ωθ = dθ/dt is the spacecraft’s orbital angular speed), Ωφ is the
azimuthal φ-component of Ωθ, λ is the spacecraft’s geocentric latitude,
r is the spacecraft’s geocentric radial distance, and PS(r) is an inverse-
cube power series representation for the triple integral over the Earth’s
volume. If the magnitude is negative, i.e., if Ωφ>ΩE (prograde), the
vector field component gtrt is directed towards the east. If Ωφ< 0 (ret-
rograde), it is directed towards the west.

The magnitude for gtrt satisfies the first requirement of the empir-
ical prediction formula. It is proportional to veq/cg ∼= veq/c. But the
empirical prediction formula also requires that the speed-change must
be in the λ-component of the spacecraft’s velocity, vλ. The magnitude
for the λ-component is defined by

vλ = rλ
dλ

dt
= rλ

dλ

dθ

dθ

dt
= rλΩθ

dλ

dθ
, (1.11)

where rλ is the λ-component of r. The velocity component, vλ, is ortho-
gonal to gtrt. Consequently, gtrt cannot directly change the magnitude
of vλ (it only changes the direction).

However, a hypothesized “induction-like” field, designated F λ, can
be directed perpendicularly to gtrt in the vλ-direction. Assume that the
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φ-component of the curl of F λ equals –kdgtrt/dt, where k is a constant∗.
This induction-like field can cause a small change in the spacecraft’s
speed. The reciprocal of the constant k, vk =1/k, called herein the
“induction speed”, becomes an adjustable parameter for each case. The
average for all cases gives an overall constant for the causal version of
Newton’s theory.

The formula for the magnitude of F λ is shown in §3 to be

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ . (1.12)

The acceleration caused by F λ satisfies the second requirement of the
empirical prediction formula, the one that requires that the anomalous
force must change the λ-component of the spacecraft’s velocity. It needs
to be emphasized at this point that the acceleration field F λ is a hypoth-
esis, and is subject to proof or disproof by the facts-of-observation. This
hypothesis is needed to satisfy the requirement that the speed-change
must be in the λ-component of the spacecraft’s velocity.

The anomalous time rate of change in the spacecraft’s kinetic energy
is given by the dot product, v ·F λ. It is shown in §3 that the calculated
asymptotic speed-change, δvtrt, is given by

δvtrt = δvin + δvout , (1.13)

where
δvin = δv (θmin) , δvout = δv (θmax) , (1.14)

and

δv (θ) =
vin
2

∫ θ

0

rλ(θ)Fλ(θ)

v2in

dλ

dθ
dθ . (1.15)

The angles θmin and θmax are the minimum and maximum values for θ.
The initial speed vin= v (θmin). The speed-change δv(θ) is proportional
to vin, which satisfies the third requirement of the empirical prediction
formula.

It is shown in §4 that this “neoclassical” causal version for acausal
Newtonian theory explains exactly the flyby anomalies. Table 1 lists, for
each of the six Earth flybys reported by Anderson et al., the observed
speed change from Appendix A, δvobs, the calculated speed change from
(1.13), δvtrt, the ratio that was used for the speed of gravity, cg/c, the
value for the induction speed ratio that gives exact agreement with the
observed speed-change, vk/veq, and the value for the eccentricity of the

∗For Maxwell’s theory, the numerical value for the constant k = 1/c [1].
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trajectory, ε.
Notice in Table 1 that the required values for vk cluster between

6veq and 17veq. Also notice that the two high-precision flybys, NEAR
and Rosetta, put very stringent limits on the speed of gravity, cg. If
the “true” value for vk had been known with high precision, the two
high-precision flybys would have provided first-ever measured values for
the speed of propagation of the Earth’s gravitational field.

In 1995, F.R. Stephenson and L.V.Morrison published a study of
records of eclipses from 700BC to 1990AD [15]. They conclude (LOD
means length-of-solar-day, ms cy−1 means milliseconds per century):
1) the LOD has been increasing on average during the past 2700 years
at the rate of +1.70±0.05 ms cy−1, i.e. (+17.0±0.5)×10−6 s per year,
2) tidal braking causes an increase in the LOD of +2.3± 0.1 ms cy−1, i.e.
(+23± 1)×10−6 s per year, and 3) there is a non-tidal decrease in the
LOD, numerically −0.6± 0.1 ms cy−1, i.e. (−6± 1)×10−6 s per year.

Stephenson and Morrison state that the non-tidal decrease in the
LOD probably is caused by “post-glacial rebound”. Post-glacial re-
bound decreases the Earth’s moment of inertia, which increases the
Earth’s spin angular speed, and thereby decreases the LOD. But post-
glacial rebound cannot change the Moon’s orbital angular momentum.

According to Stephenson and Morrison, tidal braking causes an in-
crease in the LOD of (23± 1)×10−6 seconds per year, which causes a
decrease in the Earth’s spin angular momentum, and by conservation
of angular momentum causes an increase in the Moon’s orbital angu-
lar momentum. It is shown in §5 that tidal braking alone would cause
an increase in the Moon’s orbital speed of (19± 1)×10−9 m/s per year,
which corresponds to an increase in the radius of the Moon’s orbit of
(14± 1) mm per year.

But lunar-laser-ranging experiments have shown that the radius of
the Moon’s orbit is actually increasing at the rate of (38± 1) mm per
year [16]. This rate for increase in the radius corresponds to an in-
crease in the orbital speed of (52± 2)×10−9 m/s per year. Clearly
there is an unexplained or anomalous difference in the change in the
radius of the orbit of (−24± 2) mm per year (38− 14=24), and a cor-
responding anomalous difference in the change in the orbital speed of
(−33± 3)×10−9 m/s per year (52− 19=33). This “lunar orbit anom-
aly” cannot be caused by post-glacial rebound, but it can be caused by
the proposed neoclassical causal version of Newton’s theory.

It is shown in §5 that the proposed neoclassical causal theory pro-
duces a change in the Moon’s orbital speed of (−33± 3)×10−9 m/s per
year if the value for the induction speed vk =(8± 1)veq. The eccen-
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Fig. 1: Required induction speed ratio (designated by •), vk/veq ± a rough
estimate for the uncertainty, versus eccentricity ε. The average value for all
seven ratios, v̄k =10.2 veq, is shown by the horizontal line.

tricity for the Moon’s orbit, ε=0.0554, indicates that it revolves in a
nearly circular closed orbit. Consequently, a new closed orbit case can
be added to the open orbit flybys listed in Table 1. A graph of the re-
quired induction speed ratio, vk/veq, versus eccentricity ε, Fig. 1, shows
that the required value for the induction speed for the Moon is consis-
tent with the required values for the induction speed for the six flyby
anomalies.

The average ± standard deviation for the seven induction speed
ratios in Fig. 1 is

v̄k = (10.2± 3.8)veq = 4.8± 1.8 km/s. (1.16)

It will be interesting to compare this average value with parameter
values for other theories which explain the flyby anomalies.

The neoclassical causal theory can be further tested by doing high
precision Doppler-shift research studies of the orbital motions of space-
crafts in highly eccentric and inclined near-Earth orbits. The predicted
annual speed-change δvyr (prograde) and δvryr (retrograde) for orbits
with eccentricity ε=0.5, inclination αeq =45◦, and geocentric latitude
at perigee λp =45◦, with the induction speed set equal to its maximum
probable value vk =14veq, and with the radial distance at perigee rp
ranging from 2rE to 8rE, are calculated in §6 and listed in Table 2.
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Flyby NEAR∗ GLL-I Rosetta∗ M’GER Cassini GLL-II

δvobs (mm/s) +13.46 +3.92 +1.80 +0.02 −2 −4.6
±0.01 ±0.30 ±0.03 ±0.01 ±1 ±1

δvtrt (mm/s) +13.46 +3.92 +1.80 +0.02 −2 −4.6
±0.01 ±0.30 ±0.03 ±0.01 ±1 ±1

cg/c 1.000 1 1.00 1 1 1
±0.001 ±0.02

vk/veq 6.530 12 7.1 7 17 14
±0.005 ±3 ±0.2 ±4 ±9 ±3

ε 1.8142 2.4731 1.3122 1.3596 5.8456 2.3186

Table 1: Listing of the observed speed-change, δvobs, the calculated speed-
change from (1.13), δvtrt, the ratio used for the speed of gravity, cg/c, the
required value for the induction speed ratio, vk/veq, and the eccentricity ε,
for each of the six Earth flybys reported by Anderson et al. [10]. Listed
uncertainties are rough estimates based on the uncertainty estimates of An-
derson et al. The induction speed, vk, was adjusted to make the calculated
speed change, δvtrt, be identically equal to the observed speed change, δvobs.
The two high-precision flybys are marked by an asterisk.

rp/rE 2 3 4 5 6 7 8

P 11.2 20.7 31.8 44.4 58.4 73.6 89.9

δvyr +315 +29.5 +3.93 +0.173 −0.422 −0.422 −0.362

δvryr −517 −76.8 −21.0 −7.97 −3.69 −1.95 −1.14

Table 2: Predicted period, P in hours, the speed-change for prograde orbits,
δvyr in mm/s per year, and the speed-change for retrograde orbits, δvryr in
mm/s per year, for a near-Earth orbiting spacecraft with orbital parameters
ε=0.5, αeq =45◦, and λp =45◦, with vk =14 veq, and for rp ranging from 2rE
to 8rE.
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If the proposed neoclassical causal theory is to be viable, it cannot
conflict with Einstein’s general relativity theory. The only possible con-
flict is with the excess advance in the perihelion of the planet Mercury,
+43 arc seconds per century, which is explained exactly by general rel-
ativity theory. The predicted rate for change in the angle for perihelion
for the neoclassical causal theory is shown in §7 to be less than 0.04
arc seconds per century, which is very much less than the relativistic
advance and is undetectable. Therefore, there is no conflict with general
relativity theory. Furthermore, the neoclassical causal theory does not
require any change of any kind for general relativity theory. In fact, it
is derived from general relativity theory.

There are at least two other published theories that try to provide
an explanation for the Earth flyby anomalies. These are: 1) the 3-space
flow theory of R.T.Cahill [17] and 2) the exponential radial field theory
authored by H. J. Busack [18].

In [17] Cahill reviews numerous Michelson interferometer and one-
way light-speed experiments which clearly show an anisotropy in the
velocity of light. His calculated flyby speed-changes depend on the
direction and magnitude for 3-space inflow at the spacecraft on the
date and time of the flyby. Cahill found that the average speed for 3-
space inflow is 12± 5 km/s. Cahill’s average, 12− 5=7 km/s, essentially
equals the average value for vk, see (1.16), 4.8+1.8=6.6 km/s.

In [18] Busack applies a small exponential correction for the Earth’s
radial gravitational field. If f (r,v) is Busack’s correction, the inverse-
square law becomes

gr(r,v) = − GME

r2
r

r

(
1 + f (r,v)

)
,

where f (r,v) is expressed as

f (r,v) = A exp

(
− r − rE
B –C (r · v)/(r · vSun)

)
.

The velocity v is the velocity of the field-point in the “gravitational
rest frame in the cosmic microwave background”, and vSun is the Sun’s
velocity in the gravitational rest frame. Numerical values for the ad-
justable constants are approximately A=2.2×10−4, B=2.9×105m, and
C =2.3×105m. Busack found that these values produce rather good
agreement with the observed values for the flyby speed-changes.

The maximum possible value, f (r,v)=A, occurs where r= rE. At
this point, gr =(GME/r

2
E)(1+A)∼ 10(1+2×10−4) m/s2. Compare this

estimate with an estimate for the peak value for the neoclassical causal
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transverse field for the NEAR flyby, which is g= gr
√
1+ g2trt/g

2
r ∼

∼ 10(1+8×10−12) m/s2.
Both of these alternative theories require a preferred frame-of-

reference. Neither has been tested for the lunar orbit anomaly, and
neither satisfies the causality principle because neither depends on the
speed of gravity.

In conclusion, the proposed neoclassical causal version for acausal
Newtonian theory has passed seven tests: 1) explanation of the six flyby
anomalies, and 2) explanation of the lunar orbit anomaly. It will be very
difficult if not impossible for any other rational theory to be causal and
pass all seven of these tests.

§2. Slow-speed weak-field approximation for general relativ-
ity theory. The following comment from F. Rohrlich’s article tells us
about one problem that Sir Isaac Newton could not solve [2]:

“Historians tell us that Newton was quite unhappy over the fact
that his law of gravitation implies an action-at-a-distance interac-
tion over very large distances such as that between the sun and
the earth. But he was unable to resolve this problem.”

The great author of Newtonian theory stood on the shoulders of giants,
but he was not able to see Maxwell’s theory or the slow-speed weak-field
approximation for Einstein’s theory.

The time-retarded version for the slow-speed weak-field approxima-
tion for general relativity theory provides a valid first-order approxi-
mation for the gravitational field of a moving point mass and a mov-
ing field-point. This approximation applies for “slowly” moving par-
ticles in “weak” gravitational fields. The word “slowly” means that
|u|≪ c, where |u| is the maximum magnitude for the source-particle
velocity, that |v|≪ c, where |v| is the maximum magnitude for the field-
point test-particle velocity, and the word “weak” means |ϕ|≪ c2, where
|ϕ|=GM/r is the maximum absolute magnitude for the scalar gravita-
tional potential.

The chapter entitled The Linear Approximation to GR in W. Rind-
ler’s popular textbook starts on page 188 [14]. The following is a direct
quote from pages 190 and 191:

“In the general case, Equations (8.180) can be integrated by stan-
dard methods. For example, the first yields as the physically rel-
evant solution,

γµν = − 4G

c4

∫∫∫
[Tµν ] dV

r
, (8.184)
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where [ ] denotes the value “retarded” by the light travel time to
the origin of r.

As an example, consider a system of sources in stationary
motion (e.g., a rotating mass shell). All γ’s will then be time-
independent. If we neglect stresses and products of source ve-
locities (which is not really quite legitimate14), the energy tensor
(8.128) becomes

Tµν =

(
03 −c2v

−c2v c4ρ

)
(8.185)

where 03 stands for the 3× 3 zero matrix, and so, from (8.184),

γij = 0 , i, j = 1, 2, 3. (8.186)

For slowly moving test particles, ds= cdt. If we denote differ-
entiation with respect to t by dots, the first three geodesic equa-
tions of motion become [cf. (8.15)]

ẍi = −Γi
µν ẋ

µẋν (8.187)

= −
(
γiµ,ν−

1

2
γ i
µν, −

1

4
ηiµγ,ν−

1

4
ηiνγ,µ+

1

4
ηµνγ

i
,

)
ẋµẋν , (8.188)

where we have substituted into (8.187) from (8.168) and (8.172)
and used γ= ηµνγµν =−h. Moreover, γ= c2γ44. Now if we let
ẋµ =(ui, 1) and neglect products of the u’s, Equation (8.188) re-
duces to

ẍi = −γi4,j uj + γ i
j4, u

j +
1

4
γ i
44, .

This can be written vectorially in the form

r̈ = gradϕ− 1

c
(u× curla) = −

[
e+

1

c
(u× h)

]
, (8.189)

where [cf. (8.184), (8.185)]

ϕ = −1

4
γ44 = G

∫∫∫
[ρ] dV

r
,

a = − c

4
γi4 =

1

c
G

∫∫∫
[ρu] dV

r
,

(8.190)

and
e = −gradϕ , h = curl 4a . (8.191)
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The formal similarity with Maxwell’s theory is striking. The only
differences are: the minus sign in (8.189) (because the force is
attractive); the factor G in (8.190) (due to the choice of units);
and the novel factor 4 in (8.191) (ii).”

We need to change from Rindler’s symbols to the symbols being used
in this article. For the distance from the source-point to the field-point:
r→ r′′. For the integrands: [ρ] → [ρ/r′′], and [ρu] → [ρu/r′′]. For
the gradient and the curl: grad→∇, curl→∇×.

The converted formulas for ϕ and e give the time-retarded scalar
gravitational potential and the time-retarded gravitoelectric field

ϕ = G

∫∫∫ [ ρ
r′′

]
dV, e = −∇ϕ . (2.1)

The converted formulas for a and h give the time-retarded vector
gravitational potential and the time-retarded gravitomagnetic field

a =
G

c

∫∫∫ [ρu
r′′

]
dV, h = −∇× 4a . (2.2)

Letm be the mass of a test-mass that occupies the field point. Then
the time-retarded gravitational force F that acts on the test-mass m
becomes

F = −m
(
e+

1

c
(u× h)

)
. (2.3)

§3. Derivation of the formulas for the speed-change caused
by the neoclassical causal version of Newton’s theory. Let the
Earth be simulated by a large rotating isotropic sphere of radius rE,
mass ME, angular speed ΩE, moment of inertia IE, and radial mass-
density distribution ρ(r′). The radial mass-density distribution and
values for the Earth’s parameters are shown in Appendix B.

Consider a spacecraft in an open or closed orbit around this sphere.
Let (X,Y, Z) be the rectangular coordinate axes for an inertial frame-
of-reference, let the sphere’s center coincide with the origin, and let
the (X,Y ) plane coincide with the equatorial plane, so that the Z-axis
coincides with the sphere’s rotational axis. Let r′′ be the vector distance
from r′ to r, r′′ = r− r′.

Let the elemental gravitational field of an interior circulating point-
mass dm′ at r′ be designated by d3g. As depicted in Fig. 2, d3g has two
components, a radial component designated by d3gr, and a transverse
component designated by d3gtrt. Therefore, d

3g= d3gr+ d3gtrt.
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Fig. 2: Depiction of the vector distances r, r′, and r
′′, and the components of

the gravitational field at r of an elemental mass dm′ at r′ for a spacecraft flyby
of a central spherical object of radius rE. The vector distance from dm′ at r′

to the field point at r is r
′′ = r− r

′. The curved line labeled “trajectory” is
the projection of the spacecraft’s trajectory onto the (X,Y ) equatorial plane.
The elemental gravitational field d3g has two components, a radial component
d3gr and a transverse component d3gtrt, so that d3g= d3gr + d3gtrt.

There are also two similar components of r′′, a relative radial com-
ponent designated by RC, and a relative transverse Z-axis component
designated by TCZ . These components can be found by using the vector
dot and cross products, as follows

RC =
r · r′′
r′′r

=
r · (r − r′)

r′′r
=

r

r′′
− r · r′

r′′r

TCZ =
(r × r′′)Z

r′′r
=

(r × (r − r′))Z
r′′r

=
(r′ × r)Z
r′′r





. (3.1)

Let t be the observed coordinate time for the spacecraft at r and
let t′ be the retarded-time at the interior circulating point-mass dm′ at
r′. If the interior point-mass source dm′ emits a gravitational signal at
the retarded time t′, the signal will arrive at the field-point at a slightly
later time t. Let the speed at which the gravitational signal propagates
be designated by cg. Then the formulas that connect t to t′ are

t = t′ +
r′′

cg
, t′ = t− r′′

cg

dt

dt′
= 1 +

1

cg

dr′′

dt′
,

dt′

dt
= 1− 1

cg

dr′′

dt





. (3.2)
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Obviously, t(t′) is here a function of t′, and vice versa, t′(t) is a function
of t.

By definition, the derivative dt/dt′ is the Jacobian for the transfor-
mation from t to t′. Let f (t, t′) be an implicit function of t and t′, and
let F (t) be the function that results from integration of f (t, t′) over t

F (t) =

∫ t

0

f (t, t′) dt =

∫ t′(t)

t′(0)

f (t, t′)
dt

dt′
dt′ =

=

∫ t′(t)

t′(0)

f (t, t′) (Jacobian) dt′. (3.3)

The formulas for the components d3gr and d3gtrt can be found by
substituting into the formulas of (1.9)

d3gr =

(
−G

dm′

r′′2

)
(RC)(Jacobian)

d3gtrt =

(
−G

dm′

r′′2

)
(TCZ)(Jacobian)





. (3.4)

Because the speed of gravity cg ∼= c, it has a very large numerical
value, and the derivative of r′′ with respect to t′ approximately equals
the derivative of r′′ with respect to t

dt

dt′
= 1 +

1

cg

dr′′

dt′
= 1 +

1

cg

dr′′

dt

dt

dt′
=

= 1 +
1

cg

dr′′

dt

(
1 +

1

cg

dr′′

dt′

)
∼= 1 +

1

cg

dr′′

dt
. (3.5)

The formulas for the geocentric radial distance to the field-point and
its derivative are

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=
r (θ)2

rp

ε

1 + ε
sin θ




, (3.6)

where θ is the parametric polar coordinate angle for the spacecraft, rp
is the geocentric radial distance at perigee, and ε is the eccentricity of
the orbit or trajectory.

Let the rectangular coordinates for r be rX , rY , rZ and those for r′

be r′X , r
′
Y , r

′
Z . Let the spherical coordinates for r be r, λ, φ and those
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for r′ be r′, λ′, φ′. Then

rX = r cosλ cosφ , r′X = r′ cosλ′ cosφ′

rY = r cosλ sinφ , r′Y = r′ cosλ′ sinφ′

rZ = r sinλ , r′Z = r′ sinλ′





. (3.7)

The formula for dm′ is

dm′ = ρ(r′) r′2 cosλ′ dr′ dλ′ dφ′. (3.8)

The square of the magnitude for r′′ is

r′′2 = (rX − r′X)
2
+ (rY − r′Y )

2
+ (rZ − r′Z)

2
=

= (r cosλ cosφ–r′ cosλ′ cosφ′)
2
+

+ (r cosλ sinφ–r′ cosλ′ sinφ′)
2
+

+ (r sinλ–r′ sinλ′)
2
.

Expanding the square and using the trig identity for cos (φ−φ′) gives

r′′2 = r2 (1 + x) , (3.9)

where x is defined by

x ≡ r′2

r2
– 2

r′

r

(
cosλ cosλ′ cos (φ− φ′) + sinλ sinλ′

)
. (3.10)

The derivative dr′′/dt′, which depends on the derivatives (dr/dt′,
dλ/dt′, dφ/dt′) and (dr′/dt′, dλ′/dt′, dφ′/dt′), will be needed to find
the Jacobian

dr

dt′
∼= dr

dt
= vr = Ωθ

dr

dθ
,

dr′

dt′
= 0

dλ

dt′
∼= dλ

dt
=
vλ
rλ

= Ωλ ,
dλ′

dt′
= 0

dφ

dt′
∼= dφ

dt
=
vφ
rφ

= Ωφ ,
dφ′

dt′
∼= dφ′

dt
= ΩE






. (3.11)

We actually need the derivatives that contribute to the transverse mo-
tion of the projection of the orbit onto the equatorial plane. All but
Ωφ and ΩE can be for now disregarded, because the other derivatives
produce terms that will not survive the triple integration.

If the integrand is an odd function, e.g., f (φ′) sinφ′, where f (φ′) is
any even function, f (−φ′)= f (φ′), the integral

∫
f (φ′) sinφ′dφ′ over φ′

from −π to +π vanishes, i.e., reduces to zero.
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Consequently the derivative for the square of r′′ reduces to

dr′′2

dt′
= 2r′′

dr′′

dt′
=

= 2r′r

(
dφ

dt′
− dφ′

dt′

)
cosλ cosλ′ sin (φ− φ′) . (3.12)

The derivatives dφ/dt′ ∼= dφ/dt=Ωφ and dφ′/dt′ ∼= dφ′/dt=ΩE. The for-
mula for the Jacobian reduces to

Jacobian = 1 +
1

cg

dr′′

dt′
=

= 1 +
r

cg

r′

r′′
(Ωφ − ΩE) cosλ cosλ′ sin (φ− φ′) . (3.13)

The formulas for RC and TCZ , (2.1), reduce to

RC =
r

r′′
− 1

r′′r
(rXr

′
X + rY r

′
Y + rZr

′
Z) =

=
r

r′′
− r′

r′′
(
cosλ cosλ′ cos (φ− φ′) + sinλ sinλ′

)
, (3.14)

and also

TCZ =
1

r′′r
(r′XrY − rXr

′
Y ) =

r′

r′′
cosλ cosλ′ sin (φ− φ′) . (3.15)

Firstly consider the radial component gr. Substituting (3.8), (3.13),
and (3.14) into (3.4) gives

d3gr =

(
−G

dm′

r′′2

)
(RC) (Jacobian) =

=

(
−G

ρ(r′)

r′′2
cosλ′ dr′dλ′dφ′

)
×

× r

r′′

(
1− r′

r
sinλ sinλ′ − r′

r
cosλ cosλ′ cos (φ− φ′)

)
×

×
(
1 +

r

cg

r′

r′′
(
Ωφ − ΩE

)
cosλ cosλ′ sin (φ− φ′)

)
. (3.16)

This formula contains both time-retarded or “causal” terms and non-
time-retarded or “acausal” terms. The causal terms, those which con-
tain the factor 1/cg, contain either sin (φ−φ′) or sin (φ−φ′) cos (φ−φ′).
These terms will vanish upon integration over φ′ from −π to +π, which
means that all the effects of time-retardation cancel out for the radial
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component. The only terms that survive the integration are the acausal
terms. In other words, the radial component can be regarded as be-
ing acausal. It can be found by using the standard methods. Gauss’
theorem gives the standard well-known inverse square law [13, p. 37]

gr = −G
ME

r2
r

r
. (3.17)

The radial component, until recently the only known component, has
been studied by many researchers for more than 300 years. It is well-
known that gr obeys the conservation laws for orbital energy and orbital
angular momentum. The orbital energy is conserved for an isotropic
solid central sphere (with no tidal bulges) because the central force is
conservative, i.e., there is no mechanism (e.g., friction) by which orbital
kinetic and potential energy can be dissipated into another form of
energy. The orbital angular momentum is conserved because the central
radial force cannot exert a torque on the orbiting body.

Now consider the transverse component. Substituting (3.8), (3.13),
and (3.15) into (3.4) gives

d3gtrt

(
−G

dm′

r′′2

)
(TCZ) (Jacobian) =

=

(
−G

ρ(r′)

r′′2
cosλ′ dr′dλ′ dφ′

)
×

×
(
r′

r′′
cosλ cosλ′ sin (φ− φ′)

)
×

×
(
1 +

r

cg

r′

r′′
(Ωφ − ΩE) cosλ cosλ′ sin (φ− φ′)

)
. (3.18)

This formula contains one causal term and one acausal term. The
acausal term contains sin(φ−φ′), which vanishes upon integration over
φ′ from −π to +π. The surviving term, which contains sin2(φ− φ′),
does not vanish upon the integration. Consequently, the time-retarded
transverse field is causal, and it can be found by using (Jacobian-1).

Substituting (Jacobian-1) for (Jacobian) in (3.18) gives

d3gtrt =

(
−G

ρ(r′)

r′′2
cosλ′ dr′ dλ′dφ′

)
×

×
(
r′

r′′
cosλ cosλ′ sin (φ− φ′)

)
×

×
(
r

cg

r′

r′′
(Ωφ − ΩE) cosλ cosλ′ sin (φ− φ′)

)
. (3.19)
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Rearranging and combining factors gives

d3gtrt = −A
(
Ωφ − ΩE

ΩE

)
cos2(λ) IG

dr′

rE
dλ′ dφ′, (3.20)

where the definitions for the equatorial surface speed veq, and for the
coefficient A, are

veq ≡ rEΩE , A ≡ Gρ̄ rE
veq
cg

, (3.21)

and the integrand for the triple integration is

IG ≡
(
rE
r

)3(
ρ(r′)

ρ̄

r′4

r4E

)(
cos3λ′

)
(
sin2(φ− φ′)

(1 + x)
2

)
, (3.22)

where ρ̄ is the mean value for ρ(r′). The formula for ρ(r′) and value
for ρ̄ can be found in Appendix B.

The solution for gtrt becomes

gtrt = −A
(
Ωφ − ΩE

ΩE

)
cos2(λ)TI , (3.23)

where the triple integral TI is defined by

TI ≡
∫ rE

0

dr′

rE

∫ π/2

−π/2

dλ′
∫ π

−π

IGdφ′. (3.24)

Most of the integrals in this article are solved by using the numerical
integration algorithm in Mathcad15. It can be shown that the solution
for the triple integral TI is independent of λ and φ, which means that
it can be solved with λ=0 and φ=0. But solving a triple integral by
numerical integration takes a lot of computer time, particularly if r is
near the singularity at r= rE, which must be avoided.

A suitable power series approximation for the triple integral is
needed. Let PS′(r) be a four-term power series, defined as follows

PS′(r) ≡ IE
ρ̄ r5E

(
rE
r

)3(
C0+C2

(
rE
r

)2
+C4

(
rE
r

)4
+C6

(
rE
r

)6)
. (3.25)

Let PS(r) be the same power series without the unitless coefficient,
which for the Earth has the value 1.3856 (see Appendix B)

PS(r) ≡
(
rE
r

)3(
C0 + C2

(
rE
r

)2
+ C4

(
rE
r

)4
+ C6

(
rE
r

)6)
. (3.26)
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Fig. 3: Semilog graph of the triple integral TI(r) of (3.24) designated by
+, and the power series PS′(r) of (3.25) designated by the solid curve, ver-
sus r/rE, using the coefficients of (3.27). The maximum relative difference
(TI −PS′)/TI is less than 2× 10−4. Notice that there is no singularity in
the power series and it can be extrapolated all the way down to the surface
where r= rE.

By using the least-squares fitting routine in Mathcad15, the following
values for the coefficients were found to give an excellent fit of PS′(r)
to the volume integral TI (r)

C0 = 0.50889, C2 = 0.13931

C4 = 0.01013, C6 = 0.14671

}
. (3.27)

The quality of the fit using these coefficients is shown in Fig. 3. The
maximum relative difference at the values for r shown by + in Fig. 3 is
less than 2×10−4.

The solution for gtrt(θ) can now be rewritten with PS(r) as follows

gtrt(θ) = −G
IE
r4E

veq
cg

(
Ωφ(θ)− ΩE

ΩE

)
cos2

(
λ(θ)

)
PS
(
r (θ)

)
. (3.28)

The radial component gr satisfies the conservation laws, but the rela-
tively small transverse component gtrt does not satisfy the conservation
laws. Because the strength of gtrt ∼ 10−6 gr, a good first approximation
is obtained by applying the conservation laws.

Let L be the magnitude for the spacecraft’s orbital angular momen-
tum. Then

constant = L = mvprp = m (rpΩp) rp =

= mr2pΩp = mr(θ)2Ωθ(θ) .
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Here rp is the value for r at perigee, vp is the orbital speed at perigee,
and Ωp is the orbital angular speed at perigee. Therefore, by conser-
vation of orbital angular momentum, the formula for the spacecraft’s
orbital angular speed becomes

Ωθ(θ) ≡
dθ

dt
=

rpvp
r (θ)2

=
r2p

r (θ)2
Ωp . (3.29)

Let E be the spacecraft’s orbital kinetic energy plus the orbital po-
tential energy. Then

constant = E =
1

2
mv(θ)2 − GMEm

r (θ)
=

=
1

2
mv2∞ +

1

2
mv2p −

GMEm

rp
.

Here v∞ is the spacecraft’s speed as r→∞. Therefore, by conservation
of energy, the formula for the orbital speed becomes

v (θ) =

√
v2∞ + v2p + 2

GME

r (θ)
− 2

GME

rp
. (3.30)

Let (x, y, z) be the rectangular coordinates for an inertial frame with
the origin at the center of the sphere and with the (x, y) plane coinciding
with the plane of the orbit. Let θp be the the angle which rotates the
(x, y) plane so that perigee occurs at θ= θp. The formulas for rx and
ry are

rx(θ) = r (θ) cos (θ − θp)

ry(θ) = r (θ) sin (θ − θp)

}
. (3.31)

The formulas for vx and vy are

vx =
drx
dt

= vr cos (θ − θp)− rΩθ sin (θ − θp)

vy =
dry
dt

= vr sin (θ − θp) + rΩθ cos (θ − θp)





. (3.32)

The radial component vr is given by (3.6) and (3.11)

vr = Ωθ
dr

dθ
= Ωθ

r (θ)2

rp

ε

1 + ε
sin θ ,

r (θ) =
rp (1 + ε)

1 + ε cos θ
.
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Let αeq be the inclination of the orbital plane to the equatorial plane,
and let λp be the geocentric latitude for perigee. If θp =0, let the x-axis
of the orbital frame coincide with the X-axis of the equatorial plane.
Then the formulas for the transformation from the (x, y, z) orbital frame
to the (X,Y, Z) equatorial frame are

rX = r (θ) cos (θ − θp)

rY = r (θ) cosαeq sin (θ − θp)

rZ = −r (θ) sinαeq sin (θ − θp)




. (3.33)

The formulas for the velocity components in the (X,Y, Z) frame are

vX=
drX
dt

=vr cos (θ−θp)− rΩθ sin (θ−θp)

vY =
drY
dt

=vr cosαeq sin (θ−θp) + rΩθ cosαeq cos (θ−θp)

vZ=
drZ
dt

=−vr sinαeq sin (θ−θp) – rΩθ sinαeq cos (θ−θp)






. (3.34)

Let rφ(θ) be the geocentric radial distance to the projection of the
field-point onto the (X,Y ) equatorial plane, and let rλ(θ) be the geo-
centric radial distance to the projection of the field point onto a vertical
(X,Z) plane. Then

rφ(θ) =
√
rX(θ)2 + rY (θ)

2 , (3.35)

and

rλ(θ) =
√
rX(θ)2 + rZ(θ)

2 . (3.36)

Let vφ be the speed of the projection of the field-point onto the (X,Y )
equatorial plane, and let vλ be the speed of the projection of the field
point onto a vertical (X,Z) plane. Then

vφ(θ) =
√
vX(θ)2 + vY (θ)

2 , (3.37)

and

vλ(θ) =
√
vX(θ)2 + vZ(θ)

2 . (3.38)

The formula for the tangent of the azimuthal angle φ is

tanφ(θ) =
rY (θ)√

rX(θ)2 + rZ(θ)
2

.
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Solving for φ gives

φ(θ) = tan−1


 rY (θ)√

rX(θ)2 + rZ(θ)
2


 . (3.39)

The formula for the tangent of the geocentric latitude is

tanλ(θ) =
rZ(θ)√

rX(θ)2 + rY (θ)
2

.

Solving for λ gives

λ(θ) = tan−1


 rZ(θ)√

rX(θ)2 + rY (θ)
2


 . (3.40)

The formula for Ωφ becomes

Ωφ(θ) = Ωθ(θ)
dφ

dθ
= ± vφ(θ)

rφ(θ)
. (3.41)

Use the + sign if αeq takes numerical values in the range 0◦<αeq< 90◦,
and the − sign if 90◦<αeq< 180◦.

The value for the angle θp depends on the latitude for perigee λp,
which ranges from −90◦ to +90◦, and αeq, which ranges from 0◦ to
+180◦. If αeq=0◦ or 180◦, then θp=0◦. If αeq=90◦, then θp=λp. If
0<αeq<π radians and αeq 6= π

2 and sinλp 6 sinαeq, the formula for θp
(the angle is taken here in radians) is

θp = sin−1

(
sinλp
sinαeq

)
. (3.42)

If sinλp> sinαeq, the inverse sine function is shifted from the primary
branch and the value for θp is greater than 90◦. Of the six flybys
reported by Anderson et al. [10], only the MESSENGER flyby has a
value for θp that is greater than 90◦; (from Appendix A) αeq =133.1◦,
λp =46.95◦, which gives θp =90.0467◦.

We need a method to determine the numerical values for the mini-
mum and maximum permissible values for θ, designated θmin and θmax.
One method is to solve r (θ) (3.6) for the value for θ which causes the
denominator to be zero. Let θ∞ be that value

θ∞ = cos−1

(−1

ε

)
. (3.43)
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Consequently, to avoid integration over the singularity in r (θ), the value
for θmin must be greater than −θ∞ and the value for θmax must be less
than +θ∞.

Let tin(θin) be the (negative) time for the start of inbound data
accumulation before t = 0 at θ=0 at perigee, and let tout(θout) be the
(positive) time for the end of outbound data accumulation after t = 0
at θ=0 at perigee.

The formulas for calculating tin and tout are

tin =

∫ t(θin)

t(0)

dt =

∫ θin

0

dt

dθ
dθ =

∫ θin

0

1

Ωθ(θ)
dθ =

=

∫ θin

0

r (θ)2

vprp
dθ −→ −∞ if θin = −θ∞ ,

and

tout =

∫ t(θout)

t(0)

dt =

∫ θout

0

dt

dθ
dθ =

∫ θout

0

1

Ωθ(θ)
dθ =

=

∫ θout

0

r (θ)2

vprp
dθ −→ +∞ if θout = +θ∞ . (3.44)

Numerical values for tin and tout were included in the report of Anderson
et al. [10] only for the NEAR flyby (see Appendix A).

Let a and b be the semimajor and semiminor axes for an elliptical
(closed) orbit (06 ε< 1). Kepler’s laws give the orbital angular speed
in terms of a, b, and the period P [19]

a =
1

2
(ra + rp) (semimajor axis)

b = a
√

1− ε2 (semiminor axis)

P =
a3/2√
GME

(Kepler’s 3rd law)

Ωθ(θ) =
2π

P

ab

r (θ)2
(Kepler’s 2nd law)





, (3.45)

where ra is the geocentric radial distance at apogee.
The equivalent circular orbit for an elliptical orbit will be needed.

Let rco, vco and Ωco be the radius, orbital speed, and orbital angular
speed for an equivalent circular orbit which has the period P , respec-
tively. The formulas for rco, vco, and Ωco can be found by rearranging
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Kepler’s 3rd law

P =
a√
GME

√
a =

a√
GME/a

=
rco
vco

=
1

Ωco

vco =

√
GME

a
= rcoΩco

rco = a , Ωco =
vco
a






. (3.46)

The formulas for λ(θ) and Ωφ(θ) are greatly simplified for elliptical
orbits if αeq=λp. In this case, continue to use (3.6) for r (θ), and
use (3.45) for Ωθ(θ). Then use the following formulas for λ(θ), Ωφ(θ),
and rλ(θ)

λ(θ) = tan−1
(
tanαeq cos θ

)

Ωφ(θ) = Ωθ(θ) cosαeq

rλ(θ) = r (θ) cos θ




. (3.47)

For closed orbits, the value for θmin=−π radians and the value for
θmax=+π radians.

Let F λ be an induction-like field, and let the φ-component of the
curl of F λ equal −kdgtrt/dt, where k is a constant. The formula for
the curl operator in spherical coordinates can be found in J.D. Jackson’s
textbook [1]

∇× F λ = eφ
1

r

∂

∂r
(rFλ) = − k

dgtrt

dt
= eφk

dgtrt
dt

, (3.48)

where eφ is a unit vector directed towards the east. Solving for
∂(rFλ)/∂r and integrating both sides from t(0) to t(θ) gives

∫ t(θ)

t(0)

∂

∂r
(rFλ) dt =

∫ θ

0

∂

∂r
(rFλ)

dt

dθ
dθ =

∫ θ

0

d

dθ
(rFλ)

dθ

dr

dt

dθ
dθ =

= k

∫ t(θ)

t(0)

r
dgtrt
dt

dt = k

∫ θ

0

r
dgtrt
dθ

dθ . (3.49)

Therefore, ∫ θ

0

(
d

dθ
(rFλ)

dθ

dr

dt

dθ
− kr

dgtrt
dθ

)
dθ = 0 . (3.50)

This equation is satisfied for all values of θ, if and only if,

d

dθ
(rFλ) = kr

dr

dθ

dθ

dt

dgtrt
dθ

. (3.51)
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Integrating both sides from 0 to θ gives

Fλ(θ) =
k

r (θ)

∫ θ

0

r (θ)Ωθ(θ)
dr

dθ

dgtrt
dθ

dθ . (3.52)

Units for Fλ are the units for acceleration, m/s2. The constant k has
units of (m/s)−1. Let vk be the reciprocal of k, vk ≡ 1/k, which will be
called the “induction speed”. Regard vk as an adjustable parameter for
each case, and regard the average for all cases as a fixed parameter for
the neoclassical causal theory. The formula for Fλ can be rewritten in
terms of vk and veq

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ . (3.53)

Let δv/vin≪ 1 be the relative change in the magnitude of v due to
F λ, where vin is the initial speed. The dot product v ·F λ gives the time
rate at which the orbital energy is changed. Therefore,

(
1 +

δv

vin

)2
∼= 1 + 2

δv

vin
=

= 1 +
1

v2in

∫ t(θ)

t(0)

Fλ vλ dt =

= 1 +
1

v2in

∫ θ

0

rλFλ
dλ

dθ
dθ . (3.54)

Therefore,

δv (θ) =
vin
2

∫ θ

0

rλ(θ)Fλ(θ)

v2in

dλ

dθ
dθ . (3.55)

As previously defined, θmin and θmax are the minimum and maximum
values for θ. Let δvtrt be the speed-change for a flyby or for one revo-
lution. Then

δvin = δv (θmin) , δvout = δv (θmax) , δvtrt = δvin + δvout . (3.56)

These formulas will be used in §4 to calculate the speed-changes
listed in Table 1.

§4. Calculated speed-changes for six Earth flybys caused by
the neoclassical causal version of Newton’s theory. The trajec-
tory parameters given by Anderson et al. [10] are listed in Appendix A.
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The parameters for the NEAR spacecraft flyby will be used for the fol-
lowing example calculation. The same method will be applied to derive
the time-retarded speed-change for each of the remaining five flybys.

Numerical values for the Earth’s parameters and the Earth’s radial
mass-density distribution are given in Appendix B.

As previously defined, r (θ) is the geocentric radial distance to the
spacecraft in the plane of the trajectory. The formulas for r (θ) and its
derivative (3.6) are

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=
r (θ)2

rp

ε

1 + ε
sin θ




, (4.1)

where θ is the parametric polar coordinate angle, ε is the eccentricity
for the hyperbolic trajectory, and rp is the geocentric radial distance to
the spacecraft at perigee (at θ=0).

The following method will be used to find ε. The asymptotic angle
αasm, Fig. 4, depends on the deflection angle,

αasm =
1

2
(180◦ −DA) =

1

2
(180◦ − 66.9◦) = 56.55◦. (4.2)

The radial distance at perigee, rp, depends on the altitude at perigee
hp, through rE, as follows

rp = rE + hp = rE + 539 km = 1.0846 rE . (4.3)

The impact parameter FP is given by conservation of angular momen-
tum,

FP v∞ = rpvp , (4.4)

where v∞ and vp are values listed in Appendix A and rp is given by
(4.3). Given numerical values for the NEAR flyby are

v∞ = 6.851 km/s, vp = 12.739 km/s.

The numerical value for FP becomes

FP = rp
vp
v∞

= 2.0167 rE . (4.5)

The ratio FP/OF = sinαasm. Therefore,

OF =
FP

sinαasm
= 2.4171 rE . (4.6)
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Fig. 4: Hyperbolic trajectory for the NEAR spacecraft flyby in the (x, y)
trajectory plane for a central sphere of radius rE (using (3.31) with θp = 0).
The geocentric radial distance to the spacecraft is r (θ) at the parametric
angle θ. The least geocentric distance rp is at perigee. The asymptote angle
αasm is defined by the deflection angle. The center of the sphere is at the focus
F . The impact parameter is the distance FP . Another trajectory parameter
is the distance OF .

The parameter a is the distance OF − rp,

a = OF − rp = 1.3325 rE . (4.7)

The parameter b depends on the asymptotic angle αasm,

b = a tanαasm = 2.0170 rE . (4.8)

The eccentricity ε depends on a and b,

ε =

√
a2 + b2

a
= 1.8142. (4.9)

This gives the numerical value for ε to be used in r (θ) (4.1), which
is the geocentric radial distance to the spacecraft in the plane of the
trajectory.

The value for θ∞, (3.43), for the NEAR flyby is

θ∞ = cos−1

(−1

ε

)
= 123.45◦. (4.10)
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Notice that 180◦−αasm also equals θ∞.
For the NEAR spacecraft flyby, αeq=108.0◦ and λp =33.0◦, which

from (3.42) gives

θp = sin−1

(
sinλp
sinαeq

)
= 34.9364◦. (4.11)

Numerical values for rp, αasm, ε, θ∞, and θp for each of the six flybys
reported by Anderson et al. are listed in Table 3.

The formula for λ(θ) is given by (3.40),

λ(θ) = tan−1



 rZ(θ)√
rX(θ)2 + rY (θ)

2



 , (4.12)

where rX , rY , and rZ are given by (3.33),

rX(θ) = r (θ) cos (θ − θp)

rY (θ) = r (θ) cosαeq sin (θ − θp)

rZ(θ) = −r (θ) sinαeq sin (θ − θp)





. (4.13)

Table 4 compares the listed inbound and outbound asymptotic lat-
itudes from Appendix A, λin and λout, with the calculated asymptotic
latitudes λ(−0.9999 θ∞) and λ(+0.9999 θ∞) using (4.12). This table
shows that some of the listed latitudes are inconsistent with the maxi-
mum and minimum permissible calculated values.

The starting and ending times for the NEAR flyby are known from
Appendix A to be −88.4 hours and +95.6 hours. The calculated values
for tin and tout are given by (3.44)

if θin = −0.9973 θ∞ = −123.1192◦

tin =

∫ θin

0

r (θ)2

vprp
dθ = −87.75 hours

if θout = +0.9975 θ∞ = +123.1437◦

tout =

∫ θout

0

r (θ)2

vprp
dθ = +94.88 hours






. (4.14)

This shows that known values for tin and tout can be used to calculate
precise values for θin and θout. Values for tin and tout for the other flybys
were not listed, so another method is used herein to get estimated values
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Flyby NEAR GLL-I Rosetta M’GER Cassini GLL-II

rp/rE 1.0846 1.1507 1.3070 1.3684 1.1844 1.0476

αasm 56.55◦ 66.15◦ 40.35◦ 42.65◦ 80.15◦ 64.45◦

ε 1.8142 2.4731 1.3122 1.3596 5.8456 2.3186

θ∞ 123.45◦ 113.85◦ 139.65◦ 137.35◦ 99.85◦ 115.55◦

θp +34.9364◦ +44.8989◦ +36.9067◦ +90.0468◦ −68.3765◦ −57.4444◦

Table 3: Trajectory parameter values for each of the six Earth flybys reported by Anderson et al. [10]. The ratio rp/rE
is the geocentric radial distance at perigee relative to the Earth’s radius, αasm is the angle for the asymptotes (see
Fig. 4), ε is the eccentricity for the trajectory, θ∞ is the value for θ which makes r(θ∞) go to infinity, and θp is the value
for θ which rotates the (x, y) orbital plane so that the latitude for perigee equals the value for λp listed in Appendix A.

Flyby NEAR GLL-I Rosetta M’GER Cassini GLL-II

λin +20.76◦? +12.52◦ +2.81◦? −31.44◦ +12.92◦ +34.26◦?

λ (−0.9999 θ∞) +20.52◦ +12.63◦ +1.99◦ −32.50◦ +12.94◦ +34.08◦

λout −71.96◦? −34.15◦ −34.29◦? −31.92◦ −4.99◦ −4.87◦?

λ (+0.9999 θ∞) −71.94◦ −34.26◦ −34.12◦ −32.45◦ −5.02◦ −4.62◦

Table 4: Comparison of the listed asymptotic inbound and outbound geocentric latitudes, λin and λout (from Ap-
pendix A) with the calculated latitudes, λ (−0.9999 θ∞) and λ (+0.9999 θ∞) by using (4.12). Cases where the listed
latitude is incompatible with the calculated latitude are marked with “?”.
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Flyby NEAR GLL-I Rosetta M’GER Cassini GLL-II

θin/θ∞ −0.9973 −0.998 −0.983 −0.993 −0.999 −0.998

θout/θ∞ +0.9975 +0.998 +0.993 +0.994 +0.999 +0.998

tin (hours) −88 −87 −88 −85 −89 −81

tout (hours) +95 +87 +88 +100 +89 +81

rin/rE 346 444 206 207 808 412

rout/rE 374 444 206 241 808 412

vin/v∞ +1.416 +1.415 −1.426 +1.427 +1.414 −1.415

Table 5: The above values for θin and θout for the NEAR flyby are based on
listed values for tin =88.4 hours and tout =95.6 hours. The values for θin and
θout for the other flybys are rough estimates by using plausible values for tin
and tout. The last three rows list the corresponding ratios for rin/rE, rout/rE,
and vin/v∞. The curious required sign reversal for vin for the Rosetta and
GLL-II flybys may be a manifestation of the covariance and contravariance
of vectors [20].

for θin and θout. Table 5 lists the NEAR values and the estimated
values for θin and θout, corresponding values for tin and tout, and corre-
sponding values for rin/rE, rout/rE, and vin/v∞, where rin= r (θmin),
rout = r (θout), and vin = v (θmin) by using (3.30). The required sign
change for vin for the Rosetta and GLL-II flybys may be a manifes-
tation of the covariance and contravariance of vectors [20].

The formula for Ωθ is given by (3.29)

Ωθ(θ) =
rpvp
r (θ)2

. (4.15)

The formula for Ωφ(θ) is given by (3.41)

Ωφ(θ) = ± vφ(θ)

rφ(θ)
= ±

√
vX(θ)2 + vY (θ)

2

√
rX(θ)2 + rY (θ)

2
, (4.16)

where the X and Y components of r are given by (4.13). The X , Y ,
and Z components of v, given by (3.34), are

vX(θ)=vr cos (θ−θp)−r(θ)Ωθ(θ) sin (θ−θp)
vY (θ)=vr cosαeq sin (θ−θp)+r(θ)Ωθ(θ) cosαeq cos (θ−θp)
vZ(θ)=−vr sinαeq sin (θ−θp)−r(θ)Ωθ(θ) sinαeq cos (θ−θp)




. (4.17)
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The formula for vr, given by (3.6) and (3.11), is

vr(θ) = Ωθ(θ)
dr

dθ
= Ωθ(θ)

r (θ)2

rp

ε

1 + ε
sin θ . (4.18)

A graph of Ωφ relative to ΩE, Fig. 5, shows that this component
of the angular speed is negative (retrograde) with a minimum value of
about 50 times the Earth’s angular speed.

The formula for the time-retarded transverse gravitational field is
given by (3.28)

gtrt(θ) = −G
IE
r4E

veq
cg

(
Ωφ(θ)− ΩE

ΩE

)
cos2

(
λ(θ)

)
PS
(
r (θ)

)
. (4.19)

Numerical values for G, IE, rE, ΩE, and veq are listed in Appendix B. To
start, let’s assume that cg =1.000 c for the NEAR flyby. The formula for
Ωφ is given by (4.16). The formula for λ is given by (4.12). The form-
ula for PS(r) is given by (3.26)

PS(r) ≡
(
rE
r

)3(
C0 + C2

(
rE
r

)2
+ C4

(
rE
r

)4
+ C6

(
rE
r

)6)
. (4.20)

Numerical values for the coefficients are given by (3.27)

C0 = 0.50889, C2 = 0.13931

C4 = 0.01013, C6 = 0.14671

}
. (4.21)

The formula for r (θ) is given by (4.1).
A graph of gtrt(θ) versus θ with cg =1.000 c, Fig. 6, shows that

the transverse field rises from zero to a sharp peak near θ=0◦, then
decreases to zero. An expanded view near the peak, Fig. 7, shows a
significant difference in the peak values for cg =1.000 c and cg =1.060 c.

The formula for Fλ(θ) given by (3.53) is

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ , (4.22)

where vk is the induction speed (an adjustable parameter), r (θ) and
dr/dθ are given by (4.1), Ωθ(θ) is given by (4.15), and dgtrt/dθ is found
by using the numerical differentiation algorithm in Mathcad15 for the
derivative of the time-retarded transverse field gtrt given by (4.19).

A couple of trial calculations indicated that for the NEAR flyby
vk =6.530veq gives a speed-change that agrees exactly with the observed



Joseph C. Hafele 169

Fig. 5: Graph of the ratio Ωφ/ΩE versus θ for the NEAR flyby. The
relative angular speed is negative (retrograde) because the inclination
αeq =108.0◦ > 90◦. The ratio Ωθ/ΩE is shown for reference.

Fig. 6: Time-retarded transverse gravitational field gtrt(θ) versus θ for the
NEAR flyby using cg =1.000 c.
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Fig. 7: Expanded view near the peak for gtrt(θ) versus θ for the NEAR flyby
using cg =1.000 c and cg =1.060 c. There is a 6% difference in the peak values.

Fig. 8: Graph of the induction field Fλ versus θ for the NEAR flyby with
vk/veq =6.530. During the inbound there is a positive peak and during the
outbound there is a slightly stronger negative peak.
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speed-change. A graph of Fλ versus θ, Fig. 8, shows a positive peak
during the inbound and a slightly stronger negative peak during the
outbound.

The calculated speed-change is given by (3.55)

δv (θ) =
vin
2

∫ θ

0

rλ(θ)Fλ(θ)

v2in

dλ

dθ
dθ , (4.23)

where vin = v (θmin)= 1.416v∞ (from Table 5), rλ(θ) is given by (3.36),
Fλ(θ) is given by (4.22), and dλ/dθ is found by using the numerical
differentiation algorithm in Mathcad15 for the derivative of the latitude
λ(θ) given by (4.12).

For the NEAR flyby, θmin=−123.1192◦ and θmax=+123.1437◦,
given by (4.14). Then by (3.56),

δvin = δv (θmin) = −15.9577 mm/s

δvout = δv (θmax) = +29.4184 mm/s

δvtrt = δvin + δvout = +13.4607 mm/sec




. (4.24)

The observed speed-change for the NEAR flyby (Appendix A) is

δvobs = (+13.46± 0.01) mm/s. (4.25)

The calculated value δvtrt equals exactly the observed value δvobs if

δvk = (6.530± 0.005)veq , with cg = 1.000 c. (4.26)

Repeating the calculation with cg =1.060 c requires a slightly smaller
value for vk to make δvtrt = δvobs,

vk = (6.160± 0.005)veq , if cg = (1.060± 0.001) c. (4.27)

If the “true” value for vk were known with a precision of 1 part in a thou-
sand, 0.1%, this calculation for the NEAR flyby speed-change would
provide a first-ever measured value for the Earth’s speed of gravity!

Results for all six flybys using the parameter values of Table 3 and
Table 5 are listed in Table 1. Table 1 lists the observed anomalous
speed change, δvobs, with the reported uncertainty, the calculated time-
retarded speed change, δvtrt, with the corresponding uncertainty, the
ratio gravity-speed/light-speed that was used in the calculation, cg/c,
the required relative induction speed, vk/veq, with the corresponding
uncertainty, and the calculated value for the eccentricity for the trajec-
tory, ε.
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§5. Anomalous decrease in the Moon’s orbital speed caused
by the neoclassical causal version of Newton’s theory. Numer-
ical values for the Earth’s parameters, ME, rE, ΩE, IE, and veq, are
listed in the Appendix B. Needed numerical values for the Moon, MM,
rp, ra, ε, and αeq, are also listed in the Appendix B.

Let r (θ) be the radial distance from the center of the Earth to the
center of the Moon

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=
r (θ)2

rp

ε

1 + ε
sin θ




. (5.1)

Let rM(θ) be the radial distance from the origin of a barycentric
frame to the Moon, and let rMa and rMp be the value for rM at apogee
and at perigee. Let aM and bM be the semimajor and semiminor axes
for the Moon’s elliptical orbit

rM(θ) =
ME

ME +MM
r (θ) = 0.9879 r (θ)

drM

dθ
=

ME

ME +MM

dr

dθ

rMa =
ME

ME +MM
ra = 62.905 rE

rMp =
ME

ME +MM
rp = 56.301 rE

aM =
1

2
(rMa + rMp) = 59.603 rE

bM = aM
√
1− ε2 = 59.511 rE






. (5.2)

By Kepler’s 3rd law, (3.45), the calculated lunar period PM is

PM =
2πa

3/2
M√

G (ME +MM)
= 26.78 days. (5.3)

By Kepler’s 2nd law, (3.45), the orbital angular speed is

ΩM(θ) =
2π

PM

aMbM
rM(θ)2

. (5.4)

Let the Moon’s orbital speed at perigee be vMp and at apogee be
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vMa. Numerical values are

vMp = rMpΩM(0) = 10.90×102 m/s

vMa = rMaΩM(−π) = 9.755×102 m/s

}
. (5.5)

Let vco and Ωco be the orbital speed and orbital angular speed for an
equivalent circular orbit which has the radius aM and the period PM
(3.46). We then have, respectively,

vco =

√
G (ME +MM)

aM
= 1.031×103 m/s

Ωco =
vco
aM

= 2.715×10−6 rad/s





. (5.6)

Let δvco ≪ vco be a small change in the orbital speed, let δaM ≪ aM
be the corresponding change in the radius of the orbit, and let
δΩco ≪Ωco be the corresponding change in the angular speed. Then

v2co =
constant

aM
(
1 +

δvco
vco

)2
∼= 1 + 2

δvco
vco

=
1

1 + δaM/aM
∼= 1− δaM

aM

2
δvco
vco

∼= δaM
aM

δΩco

Ωco

∼= δvco
vco

− δaM
aM

= −δvco
vco






. (5.7)

According to Stephenson and Morrison, tidal braking increases the
LOD by 23×10−6 seconds per year [15]. Let δLOD≪LOD be this
change in the LOD

LOD = 60× 60× 24 = 86400 s

δLOD = 23×10−6 s per year

}
. (5.8)

The Earth’s sidereal rotational period in seconds is

2π

ΩE
= 86164.1 s. (5.9)

Therefore,

LOD =
2π

ΩE
1.002738 = 86400 s. (5.10)
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Let δΩE be a small change in ΩE. Then

1 +
δLOD

LOD
=

1

1 + δΩE/ΩE

∼= 1− δΩE

ΩE

δΩE = −ΩE
δLOD

LOD
= −1.941×10−14 rad/s per year




. (5.11)

Let SE be the magnitude for the Earth’s spin angular momentum,
and let δSE be a small change in SE. Assume there is no change in IE.
Then we have

SE = IEΩE = 5.851×1033 kg×m2/s

δSE = SE
δΩE

ΩE
= −1.558×1024 kg×m2/s per year





. (5.12)

Let LM be the magnitude for the Moon’s orbital angular momentum,
and let δLM be a small change in LM. By conservation of the Earth’s
spin angular momentum and the Moon’s orbital angular momentum,

LM =MMvcoaM = 2.877×1034 kg×m2/s

δLM

LM
=
δvco
vco

+
δaM
aM

= 3
δvco
vco

LM + SM = constant

δLM = −δSE = +1.558×1024 kg×m2/s per year





. (5.13)

The resulting change in the orbital speed is

δvco =
vco
3

δLM

LM
= +18.6×10−9 m/s per year. (5.14)

Equation (5.5) gives

δaM = 2aM
δvco
vco

= +13.7×10−3 m per year. (5.15)

This shows that tidal braking alone causes an increase in the radius of
14 mm per year, and a corresponding increase in the orbital speed of
19×10−9 m/s per year.

But lunar-laser-ranging experiments have shown that the radius is
actually increasing by [16]

δaM = +38 mm per year. (5.16)
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The corresponding increase in the orbital speed (5.7) takes the following
numerical value

δvco =
vco
2

δaM
aM

= +51.6×10−9 m/s per year. (5.17)

There is an obvious difference! An unexplained hidden action is caus-
ing the rate for change in the radius to decrease from 38 to 14 mm
per year (−24 mm per year). The corresponding rate for change in
the orbital speed is decreased from 52×10−9 to 19×10−9 m/s per year
(−33×10−9 m/s per year). This unexplained difference is the “lunar
orbit anomaly”.

The lunar orbit anomaly can be explained exactly by the neoclassical
causal theory. Let αeq be the average inclination of the Moon’s orbital
plane (Appendix B)

αeq = 23◦ ± 5◦. (5.18)

Let the latitude for perigee, λp, equal αeq. Then by (3.47),

λM(θ) = tan−1 (tanαeq cos θ) , (5.19)

and the φ-component of ΩM becomes

Ωφ(θ) = ΩM(θ) cosαeq . (5.20)

By (3.47), the formula for the λ-component of rM becomes

rλ(θ) = rM(θ) cos θ . (5.21)

The formula for the Earth’s transverse field at the Moon with cg = c
(3.28) is

gtrt(θ) = −G IE
r4E

veq
c

(
Ωφ(θ)− ΩE

ΩE

)
cos2

(
λM(θ)

)
PS
(
r(θ)

)
. (5.22)

The formula for PS(r) is given by (3.26).
A trial run gave the following value for the induction speed which

gives the observed speed-change

vk = 7.94 veq . (5.23)

The formula for the transverse induction-like field (3.53) becomes

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

ΩM(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ . (5.24)
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Fig. 9: Induction-like field Fλ versus the parametric angle θ for the Moon
with vk =7.94 veq.

The derivative dgtrt/dθ is found by using the differentiation algorithm
in Mathcad15. A graph of Fλ versus θ for the Moon, Fig. 9, shows that
there is asymmetry about θ=0.

The formula for the speed change, (3.55), becomes

δv(θ) =
vMa

2

∫ θ

0

rλ(θ)Fλ(θ)

vM2
a

dλ

dθ
dθ . (5.25)

By numerical differentiation and integration,

δvin = −δv(−π) = −1.21×10−9 m/s

δvout = +δv(+π) = −1.21×10−9 m/s

δvtrt = δvin + δvout = −2.42×10−9 m/s per revolution




. (5.26)

Let Nrev be the number of lunar revolutions per year, let yr be the
number of seconds in a year, and let δvM be the accumulated orbital
speed-change per year. Then

Nrev = yr/PM = 13.64

δvM = Nrevδvtrt = −33.0×10−9 m/s per year

}
. (5.27)

This shows that, with vk =7.94 veq, the calculated value for the Moon’s
orbital speed-change is −33×10−9 m/s per year, which explains exactly
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the lunar orbit anomaly. The final value for vk with uncertainty reduces
to vk

veq
= 8± 1. (5.28)

§6. Predicted annual speed-change for spacecrafts in highly
eccentric and inclined near-Earth orbits. The speed-change
caused by the causal version of Newton’s theory depends on the speed of
propagation of the gravitational field, cg, the properties of the central
sphere; ME, rE, ΩE, IE, and veq, the orbital properties of the space-
craft; rp, ε, αeq, and λp, and the induction speed, vk. If ε=0, the
speed-change δvtrt =0, regardless of the value for αeq. If αeq=0, the
speed-change δvtrt =0, regardless of the value for ε. Even if both ε
and αeq are not zero, the speed-change is still zero if perigee is over
the equator or one of the poles. The maximum speed-change occurs for
spacecrafts with highly eccentric and inclined near-Earth orbits, such
as with the inclination αeq=45◦ and the latitude at perigee λp =45◦.

Suppose the orbital properties for a spacecraft are ε=0.5, αeq=45◦,
and λp =45◦. Let rp range from 2rE to 8rE. Shown below are the
numerical values for rp =2rE. The period is given by Kepler’s 3rd law
(3.45)

P =
2πa3/2√
GME

= 11.2 hours, (6.1)

where

ra = rp
1 + ε

1− ε
= 6rE

a =
1

2
(ra + rp) = 4rE

b = a
√
1− ε2 = 3.464 rE






. (6.2)

The formula for Ωθ is given by (3.45)

Ωθ(θ) =
2π

P

ab

r (θ)2
, (6.3)

where

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=
r (θ)2

rp

ε

1 + ε
sin θ




. (6.4)

Let Ωa be the spacecraft’s orbital angular speed at apogee and let
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va be the orbital speed at apogee. Then

Ωa = Ωθ(−π) = 0.819ΩE

va = Ωara = 4.92 veq

}
. (6.5)

If the latitude for perigee λp =αeq, and if the value for θ at perigee is
zero, then by (3.47)

λ(θ) = tan−1 (tanαeq cos θ) , (6.6)

and the φ-component of Ωθ becomes

Ωφ(θ) = Ωθ(θ) cosαeq for prograde orbits

Ωrφ(θ) = −Ωφ(θ) for retrograde orbits

}
. (6.7)

The projection of “prograde” orbits onto the equatorial plane revolves
in the same direction as the Earth’s spin, and the projection of “retro-
grade” orbits onto the equatorial plane revolves opposite to the direction
of the Earth’s spin.

The formula for the λ-component of r becomes

rλ(θ) = r (θ) cos θ . (6.8)

The formula for the Earth’s time-retarded transverse field with
cg = c, (3.28), is

gtrt(θ) = −G IE
r4E

veq
c

(
Ωφ(θ)− ΩE

ΩE

)
cos2

(
λ(θ)

)
PS
(
r (θ)

)
, (6.9)

where PS(r) is given by (3.26).
The “true” value for vk probably lies between 10veq and 14veq (1.16).

To minimize the predicted speed-change, choose its maximum probable
value, vk =14veq. The formula for the induction-like field is given by
(3.53)

Fλ(θ) =
veq
vk

rE
r (θ)

∫ θ

0

r (θ)

rE

Ωθ(θ)

ΩE

1

rE

dr

dθ

dgtrt
dθ

dθ . (6.10)

A graph of Fλ for rp =2rE with vk =14veq is shown in Fig. 10.
The speed-change for one period is given by (3.56)

δv(θ) =
va
2

∫ θ

0

rλ(θ)Fλ(θ)

v2a

δvtrt = δvin + δvout = −δv(−π) + δv(+π) =

= 28.3 mm/s per revolution




. (6.11)
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Fig. 10: Induction-like field Fλ versus the parametric angle θ for a spacecraft
in a near-Earth orbit with ε=0.5, αeq =45◦, λp =45◦, and rp =2rE with
vk =14veq. The solid curve is for a prograde orbit and the dashed curve is for
a retrograde orbit.

Let Nrev be the number of revolutions in one year, let δvyr be the to-
tal speed-change accumulated during one year, and let yr be the number
of seconds in a year (P is the period in seconds)

Nrev = yr/P = 780 revolutions per year

δvyr = Nrev δvtrt = 315 mm/s per year

}
. (6.12)

The resulting calculated periods and speed-changes for rp ranging
from 2rE to 8rE are listed in Table 2.

§7. Is there a conflict between the neoclassical causal theory
and general relativity theory? The only possible case where there
could be a conflict is the excess for the advance in the perihelion of Mer-
cury [21]. This section shows that the Sun’s time-retarded transverse
gravitational field causes a change in the angle for Mercury’s perihelion
of less than 0.04 arc seconds per century, which is negligibly less than
the relativistic advance of 43 arc seconds per century and therefore is
undetectable.

Let MS, rS, ΩS, IS, and veq be the Sun’s mass, radius, spin angu-
lar speed, moment of inertia, and equatorial surface speed. Numerical
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values for the Sun are listed in Appendix B. A 4-term power series ap-
proximation for the triple integral over the Sun’s volume also can be
found in Appendix B.

Let ra and rp be Mercury’s heliocentric radial distance at aphelion
and at perihelion, let ε be the eccentricity, let PM be the observed
sidereal orbital period, let αeq be the inclination to the Sun’s equatorial
plane, and let λp be the heliocentric latitude at perihelion. Numerical
values from Appendix B are

ra = 69816900×103 m

rp = 46001200×103 m

ε = 0.205630

PM = 87.969 days = 7.6005×106 s

αeq = 3.38◦

λp = 3.38◦





. (7.1)

The semimajor and semiminor axes are

aM =
1

2
(ra + rp) = 5.791×1010 m

bM = aM
√
1− ε2 = 5.667×1010 m



 . (7.2)

The calculated period given by Kepler’s 3rd law is

P =
2πa

3/2
M√

GMS

= 7.5998×106 s = 1.01PM . (7.3)

The formula for Ωθ, given by (2.28), is

Ωθ(θ) =
2π

P

aM bM
r (θ)2

, (7.4)

where

r (θ) =
rp (1 + ε)

1 + ε cos θ

dr

dθ
=
r (θ)2

rp

ε

1 + ε
sin θ




. (7.5)

Let Ωa be Mercury’s orbital angular speed at aphelion and let va be
the orbital speed at aphelion. Then

Ωa = Ωθ(−π) = 5.559×10−7 rad/s

va = Ωara = 3.881×104 m/s

}
. (7.6)
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Mercury’s heliocentric latitude is

λ(θ) = tan−1 (tanαeq cos θ) , (7.7)

and the φ-component of Ωθ is

Ωφ(θ) = Ωθ(θ) cosαeq . (7.8)

The λ-component of r is

rλ(θ) = r (θ) cos θ . (7.9)

The formula for the Sun’s time-retarded transverse field with cg = c
substituted is

gtrt(θ) = −G IS
r4S

veq
c

(
Ωφ(θ)− ΩS

ΩS

)
cos2

(
λ(θ)

)
PS
(
r (θ)

)
. (7.10)

The average value for vk is 10veq. The formula for the induction-like
field becomes

Fλ(θ) =
veq
vk

rS
r (θ)

∫ θ

0

r (θ)

rS

Ωθ(θ)

ΩS

1

rS

dr

dθ

dgtrt
dθ

dθ . (7.11)

By numerical differentiation and integration, the speed-change becomes

δvtrt = −4.71×10−7 m/s per revolution. (7.12)

Numerical values for the orbital speed vco and the angular speed Ωco

for an equivalent circular orbit for Mercury, by (3.46), are

vco =

√
GMS

aM
= 4.788×104 m/s

Ωco =
vco
aM

= 8.268×10−7 rad/s





. (7.13)

Let θp be the value for θ at perihelion, let δθp be the change in θp per
revolution, and set δvco = δvtrt. Then

δθp
2π

=
δΩco

Ωco
= 3

δvco
vco

= 3
δvtrt
vco

δθp = 6π
δvtrt
vco

= −1.86×10−10 rad per revolution




. (7.14)

Let Nrev be the number of Mercury’s revolutions in one year, let ∆θp
be the accumulated angular change of Mercury during one year, and let
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yr be the number of seconds in a year

Nrev =
yr

PM
= 4.125

∆θp = Nrevδθp = −7.71×10−9 rad per year

∆θp ×
180

π
× 60× 60× 100 = −0.016 arc sec per century





. (7.15)

Thus we find that the absolute magnitude for the change in the angle
for perihelion is less than 0.04 arc seconds per century, which is totally
negligible compared with the relativistic change of 43 arc seconds per
century.

§8. Conclusions and recommendations. There is here within
conclusive evidence that the proposed neoclassical causal version of
Newton’s theory agrees with the facts-of-observation to the extent that
such facts are currently available. The proposed causal version is a nat-
ural rational extension of Newton’s acausal theory. It applies only for
slow-speeds and weak-fields, i.e., for v2 ≪ c2 and GM/r≪ c2. Effects of
time retardation appear at the relatively large first-order v/cg level, but
they are normally very small and are previously undetected because they
decrease inversely with the cube of the bypass distance. If the bypass
is very close, however, time retardation effects can be relatively large.
It is recommended that future research projects utilize various available
methods to detect new first-order effects of the causality principle.
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Appendix A. Parameter values for six Earth flybys

Table A1 lists needed parameter values which can be found in the report
by Anderson et al. [10]. The symbols are changed to be those used for this
article.

The start time for the incoming and the end time for the outgoing data
intervals for the NEAR flyby are stated in the caption for Fig. 3 of the report



Joseph C. Hafele 183

Flyby NEAR GLL-I Rosetta M’GER Cassini GLL-II

hp (km) 539 960 1956 2347 1175 303

λp (deg) +33.0 +25.2 +20.20 +46.95 −23.5 −33.8

vp (km/s) 12.739 13.740 10.517 10.389 19.026 14.080

v∞ (km/s) 6.851 8.949 3.863 4.056 16.010 8.877

DA (deg) 66.9 47.7 99.3 94.7 19.7 51.1

αeq (deg) +108.0 +142.9 +144.9 +133.1 +25.4 +138.7

λin (deg) +20.76 +12.52 +2.81 −31.44 +12.92 +34.26

λout (deg) −71.96 −34.15 −34.29 −31.92 −4.99 −4.87

δvobs (mm/s) +13.46 +3.92 +1.80 +0.02 −2 −4.6
±0.01 ±0.3 ±0.03 ±0.01 ±1 ±1

δvemp (mm/s) +13.28 +4.12 +2.07 +0.06 −1.07 −4.67

Table A1: Earth flyby parameter values for the NEAR, Galileo-I, Rosetta,
MESSENGER (M’GER), Cassini, and Galileo-II spacecraft flybys. The al-
titude at perigee hp is referenced to the Earth geoid, λp is the geocentric
latitude at perigee, vp is the magnitude of the spacecraft’s inertial velocity at
perigee, v∞ is the magnitude for the osculating hyperbolic excess velocity, DA
is the deflection angle between the incoming and outgoing asymptotic velocity
vectors, αeq is the inclination of the orbital plane to the Earth’s equatorial
plane, λin and λout are the geocentric latitudes for the incoming and outgoing
osculating asymptotic velocity vectors, and δvobs is the measured change in
the spacecraft’s orbital speed with an estimated realistic uncertainty for the
measured value. The last row gives the calculated speed-change values from
the empirical prediction formula δvemp.

by Anderson et al.

tin = −88.4 hours, tout = +95.6 hours. (A.1)

The data time intervals for the other flybys were not given.
Anderson et al. report the asymptotic flyby “declinations” instead of

the asymptotic geocentric latitudes. From Fig. 1 of their report, there is no
doubt that the inbound asymptotic latitude λin is positive for the NEAR flyby
(+ for northern latitudes) and the outbound asymptotic latitude λout is neg-
ative (− for southern latitudes). This recognition for the correct signs is
applied in Table A1.

Notice in Table A1 that both of the flybys which have negative speed-
changes (the flybys in the case of Cassini and GLL-II) have negative values
for the latitude at perigee λp.
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Appendix B. Various numerical values and radial mass-
density distributions.

Various numerical values are needed to evaluate the formulas for the trans-
verse gravitational field. The following values were found in [22,23]:

G = 6.6732 × 10−11 m3/kg×s2 Gravity constant,

c = 2.997925 × 108 m/s Vacuum speed of light,

ΩE = 7.292115 × 10−5 rad/s Earth’s sidereal angular speed,

ME = 5.9761 × 1024 kg Earth’s total mass,

rE = 6, 371, 034 m Earth’s equivalent spherical radius,

vE = rEΩE = 464.58 m/s Earth’s equatorial surface speed,

VE = 1.08322 × 1021 m3 Earth’s volume,

ρ̄E = 5.517 × 103 kg/m3 Earth’s mean mass-density,

IE = 8.0238 × 1037 kg/m2 Earth’s spherical moment of inertia,

IE/ρ̄ r
5
E = 1.3856 Unitless ratio for the moment of inertia.

The Earth’s interior consists of four major regions: inner core, outer core,
mantle, and crust [22]. The formula for the radial mass-density distribution,
derived from seismic data, is

ρ(r′) = if
(

r′<ric, ρic, if
(

r′<roc, ρoc(r
′), if

(

r′<rman, ρman(r
′), ρcst(r

′)
))

)

,

where (radii are in meters and densities are in kg/m3)

ric = 1230× 103,

ρic = 13× 103,

roc = 3486 × 103,

ρoc(r
′) = 12×103 + 2.0×103

(

ric−r′

roc−ric

)

− 0.6×103
(

ric−r′

roc−ric

)2

,

rman = 6321×103,

ρman(r
′) = 5.75×103 + 0.4×103

(

roc−r′

rman−roc

)

− 2.05×103
(

roc−r′

rman−roc

)2

,

rcst = rE = 6378×103,

ρcst(r
′) = 3.3×103 + 0.6×103

(

rman−r′

rcst−rman

)

− 0.5×103
(

rman−r′

rcst−rman

)2

.

The following numerical values for the Moon are taken from [24]:

MM = 7.3477×1022 kg Moon’s mass,

rp = 363, 104×103 m Moon’s radial distance at perigee,

ra = 405, 696×103 m Moon’s radial distance at apogee,
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ε = 0.0554 Eccentricity,

Psid = 27.321582 days Moon’s sidereal orbital period,

Psol = 29.530589 days Moon’s solar orbital period,

αeq = 23.4◦ ± 5.2◦ Moon’s inclination (average± variation).

The following numerical values for the Sun are taken from [25]:

MS = 1.9891×1030 kg Sun’s mass,

rS = 6.955×108 m Sun’s equatorial radius,

ρ̄ = 1.408×103 kg/m3 Sun’s mean mass-density,

ρctr = 1.622×105 kg/m3 Mass-density at the center,

ρphoto = 2×10−4 kg/m3 Mass-density at the photosphere,

PS = 25.05 days = 2.158×104 s Equatorial rotational period,

ΩS = 2π/PS = 2.911×10−4 rad/s Equatorial angular speed,

veq = rSΩS = 2.025×103 m/s Equatorial rotational surface speed,

IS = 3.367×1046 kg×m2 Sun’s moment of inertia,

IS/ρ̄r
5
S = 0.147 Unitless ratio for the moment of inertia,

αS = 7.25◦ Obliquity to the ecliptic.

An exponential function provides a reasonably valid approximation for the
Sun’s radial mass-density distribution

ρ(r′) = if

(

r′ 6 rS, ρctr exp

(

−

(

r′

rcore

)2
)

, 0

)

,

where the numerical value for rcore is

rcore = 0.18707 rS .

The following four-term power series

PS(r) =

(

rS
r

)3
(

C0 + C2

(

rS
r

)2

+ C4

(

rS
r

)4

+ C6

(

rS
r

)6
)

,

provides an excellent fit to the triple integral over the Sun’s volume with the
following values for the coefficients

C0 = 0.500000, C2 = 0.017498,

C4 = 0.001376, C6 = 0.000173.

The following numerical values for the planet Mercury are taken from [21]:

rp = 46, 001, 200×103 m Radial distance at perihelion,

ra = 69, 816, 900×103 m Radial distance at aphelion,

ε = 0.205630 Eccentricity,
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PM = 87.969 days Mercury’s sidereal orbital period,

αeq = 3.38◦ Inclination to the Sun’s equator,

λp = 3.38◦ Heliocentric latitude at perihelion.
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Part I. Theoretical concepts

Time is the most important and most enigmatic property of nature.
The concept of time surpasses our imagination. The recondite attempts
to understand the nature of time by the philosophers of antiquity, the
scholars in the Middle Ages, and the modern scientists, possessing a
knowledge of sciences and the experience of their history, have proven
fruitless. Probably this occurs because time involves the most profound
and completely unknown properties of the world which can scarcely be
envisaged by the bravest flight of human fancy. Past these properties
of the world there passes the triumphal procession of modern science
and technical progress. In reality, the exact sciences negate the exis-
tence in time of any other qualities other than the simplest quality of
“duration” or time intervals, the measurement of which is realized in
hours. This quality of time is similar to the spatial interval. The theory
of relativity by Einstein made this analogy more profound, considering
time intervals and space as components of a 4-dimensional interval of a
Minkowski universe. Only the pseudo-Euclidian nature of the geometry
of the Minkowski universe differentiates the time interval from the space
interval. Under such a conception, time is scalar and quite passive. It
only supplements the spatial arena, against which the events of the uni-
verse are played out. Owing to the scalarity of time, in the equations of
theoretical mechanics the future is not separated from the past; hence,
the causes are not separated from the results. In the result, classical
mechanics brings to the universe a strictly deterministic, but deprived,
causality. At the same time, causality comprises the most important
quality of the real world.

The concept of causality is the basis of natural science. The natu-
ral scientist is convinced that the question “why” is a legitimate one,
that a question can be found for it. However, the content of the exact
sciences is much more impoverished. In the precise sciences, the legit-
imate question is only “how?”: i. e., in what manner a given chain of
occurrences takes place. Therefore, the precise sciences are descriptive.
The description is made in a 4-dimensional world, which signifies the
possibility of predicting events. This possibility of prediction is the key
to the power of the precise sciences. The fascination of this power is so
great that it often compels one to forget the basic, incomplete nature
of their basis. It is therefore probable that the philosophical concept
of Mach, derived strictly logically from the basis of the exact sciences,
attracted great attention, in spite of its nonconformity to our knowledge
concerning the universe and daily experience.
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The natural desire arises to introduce into the exact science the
principles of natural science. In other words, the tendency is to at-
tempt to introduce into theoretical mechanics the principle of causality
and directivity of time. Such a mechanics can be called “causal” or
“asymmetrical” mechanics. In such mechanics, there should be realiz-
able experience, indicating where the cause is and where the result is. It
can be demonstrated that in statistical mechanics there is a directivity
of time and that it satisfies our desires. In reality, statistical mechanics
constructs a certain bridge between natural and theoretical mechanics.
In the statistical grouping, an asymmetrical state in time can develop,
owing to unlikely initial conditions caused by the direct intervention of a
proponent of the system, the effect of which is causal. If, subsequently,
the system will be isolated, in conformity with the second law of ther-
modynamics, its entropy will increase, and the directivity of time will
be associated with this trend in the variation of entropy. As a result,
the system will lead to the most likely condition; it will prove to be in
equilibrium, but then the fluctuations in the entropy of various signs will
be encountered with equal frequency. Therefore, even in the statistical
mechanics of an isolated system, under the most probable condition, the
directivity of time will not exist. It is quite natural that in statistical
mechanics, based on the conventional mechanics of a point, the direc-
tivity of time does not appear as a quality of time itself but originates
only as a property of the state of the system. If the directivity of time
and other possible qualities are objective, they should enter the system
of elementary mechanics of isolated processes. However, the statistical
generalization of such mechanics can lead to a conclusion concerning
the unattainability of equilibrium conditions. In reality, the directivity
of time signifies a pattern continuously existing in time, which, acting
upon the material system, can cause it to transfer to an equilibrium
state. Under such a consideration, the events should occur not only in
time, as in a certain arena, but also with the aid of time. Time be-
comes an active participant in the universe, eliminating the possibility
of thermal death. Then, we can understand harmony of life and death,
which we perceive as the essence of our world. Already, owing to these
possibilities alone, one should carefully examine the question as to the
manner in which the concept of the directivity of time or its pattern
can be introduced into the mechanics of elementary processes.

We shall represent mechanics in the simplest form, as the classical
mechanics of a point or a system of material points. Desiring to intro-
duce thus into mechanics the principle of causality of natural science, we
immediately encounter the difficulty that the idea of causality has not



Nikolai A. Kozyrev 191

been completely formulated in natural science. In the constant quests
for causes, the naturalist is guided rather by his own intuition than by
fixed procedures. We can state only that causality is linked in the clos-
est way with the properties of time, specifically with the difference in
the future and the past. Therefore, we will be guided by the following
hypothesis:

I. Time possesses a quality, creating a difference in causes from ef-
fects, which can be evoked by directivity or pattern. This property
determines the difference in the past from the future.

The requirement for this hypothesis is indicated by the difficulties
associated with the development of the Liebnitz idea concerning the
definition of the directivity of time through the causal relationships. The
profound studies by H. Reichenbach [1] and G. Withrow [2] indicate that
one can never advance this idea strictly, without tautology. Causality
provides us with a concept of the existence of the directivity of time
and concerning certain properties of this directivity; at the same time,
it does not constitute the essence of this phenomenon, but only its result.

Let us now attempt, utilizing the simplest properties of causality,
to provide a quantitative expression of hypothesis I. Proceeding from
those circumstances in which: (1) cause is always outside of the body
in which the result is realized and (2) the result sets in after the cause;
we can formulate the next two axioms:

II. Causes and results are always separated by space. Therefore, be-
tween them there exists an arbitrarily small, but not equaling zero,
spatial difference δx.

III Causes and results are separated in time. Therefore, between their
appearance there exists an arbitrarily small, but not equaling zero,
time difference δt of a fixed sign.

Axiom II forms the basis of classical Newtonian mechanics. It is
contained in a third law, according to which a variation in a quantity
of motion cannot occur under the effect of external forces. In other
words, in a body there cannot develop an external force without the
participation of another body. Hence, based on the impenetrability of
matter, δx 6=0. However, on the basis of the complete reversibility of
time, axiom III is lacking in the Newtonian mechanics: δt=0.

In atomic mechanics, just the opposite takes place. In it, the prin-
ciple of impenetrability loses its value and, based on the possibility of
the superposition of fields, it is obviously assumed that δx=0. How-
ever, in atomic mechanics there is a temporal irreversibility, which did
not exist in Newtonian mechanics; the influence upon the system of a
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macroscopic body, according to theorists, introduces a difference be-
tween the future and the past, because the future proves predictable,
while the past is not. Therefore, in the temporal environs of the ex-
periment, δt 6=0, although it can be arbitrarily small. In this manner,
classical mechanics and atomic mechanics enter into our axiomatics as
two extreme systems. This circumstance becomes especially clear if we
introduce the relationship:

δx

δt
= c2 . (1)

In a real world, c2 most likely constitutes a finite value. However,
in classical mechanics, δx 6=0, δt=0, and hence c2 =∞. In atomic me-
chanics, δx=0, δt 6=0, and therefore c2 =0.

Let us now discuss the concept of the symbols δx and δt introduced
by us. In a long chain of causal-resultant transformations, we are consid-
ering only that elementary chain wherein the cause produces the result.
According to the usual physical viewpoints, this chain comprises a spa-
tial time point, not subject to further analysis. However, on the bases
of our axioms of causality, this elementary causal-resultant chain should
have a structure caused by the impossibility of spatial-time superimpo-
sition of causes and effects. The condition of non-superimposition in
the case of the critical approach is stipulated by the symbols δx and δt.
Hence, these symbols signify the limit of the infinitely-small values un-
der the condition that they never revert to 0. These symbols determine
the point distances or dimensions of an “empty” point, situated be-
tween the material points, with which the causes and effects are linked.
However, in the calculation of the intervals of the entire causal-resultant
chain, they should be considered equal to 0 with any degree of accuracy.
However, if they have infinitely low values of one order, their ratio c2
can be a finite value and can express a qualitatively physical property
of the causal-resultant relationship. This physical property is included
in the pattern of time, formulated qualitatively by hypothesis I.

In reality, according to definition (I), the value c2 has the dimension-
ality of velocity and yields a value to the rate of the transition of the
cause to the effect. This transition is accomplished through the “empty”
point, where there are no material bodies and there is only space and
time. Hence, the value c2 can be associated only with the properties
of time and space, not with the properties of bodies. Therefore, c2
should be a universal constant, typifying the pattern of time in our
world. The conversion of the cause to an effect requires the overcoming
of the “empty” point in space. This point is an abyss, through which
the transition can be realized only with the aid of the time pattern.
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From this, there follows directly the active participation of time in the
processes of the material systems.

In Equation (1), the symbol δt has a definite meaning. It can be
established by the standard condition: the future minus the past com-
prises a positive value. However, the sign of the value for δx is quite
arbitrary, since space is isotropic and in it there is no principal direction.
At the same time, the sign of c2 should be definite, because logically
we should have a possibility of conceiving of the world with an oppo-
site time pattern: i. e., of another sign. A difficulty arises, which at first
glance seems insurmountable, disrupting the entire structure formulated
until now. However, owing to just this difficulty, it becomes possible to
make an unequivocal conclusion: c2 is not a scalar value but a pseudo-
scalar value: i. e., a scalar changing sign in the case of the mirror image
or inversion of the coordinate system. In order to be convinced of this,
let us rewrite Equation (1) in a vector form, having signified by i the
unit vector of the direction of the causal-resultant relationship:

c2 (iδt) = δx . (1a)

If c2 is pseudo-scalar, iδt should be a critical of a pseudo-vector
collinear with the critical vector δx. The pseudo-vector nature of iδt
signifies that in the plane (yz) of a perpendicular to the x-axis there
occurs a certain turning, the sign of which can be determined by the
sign of δt. This means that with the aid of δt, we can orient the plane
perpendicular to the x-axis: i. e., we can allocate the arrangement of
the y and z axes. Let us now alter in Equation (1) the sign of δx,
retaining the sign of δt and signifying the retention of the orientation
of the plane (yz). Then the constant c2 changes its sign, as it should,
since our operation is tantamount to a mirror image. However, if we
change the sign not only of δx but also of δt, the constant c2 based on
Equation (1) does not change sign. This should be the case, because in
the given instance we effected only a turning of the coordinate system.
Finally, changing the sign of δt only, we once again obtain a mirror
(specular) image of the coordinate system under which the sign of the
pseudo-scalar should change. This proof of the pseudo-scalar property
of the time pattern can be explained by the following simple discussion.
The time pattern should be determined in relation to a certain invari-
ant. Such an invariant, independent of the properties of matter, can be
only space. The absolute value of the time pattern is obtained when
the absolute difference in the future and the past will be linked with
the absolute difference between right and left, although these concepts
per se are quite tentative. Therefore, the time pattern also should be
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established by a value having the sense of a linear velocity of turning
(rotation). From this it follows that c2 cannot equal the speed of light,
c1, comprising the conventional scalar.

From the pseudo-scalar properties of the time pattern, there imme-
diately follows the basic theorem of causal mechanics: a world with
an opposite time pattern is equivalent to our world, reflected
in a mirror.

In a world reflected in a mirror, causality is completely retained.
Therefore, in a world with an opposite time pattern the events should
develop just as regularly as in our world. It is erroneous to think that,
having run a movie film of our world in a reverse direction, we would
obtain a pattern of the world of an opposite time direction. We can
in no way formally change the sign in the time intervals. This leads
to a disruption of causality: i. e., to an absurdity, to a world which
cannot exist. In a variation of the directivity of time, the influences
that the time pattern exerts upon the material system should appear
as modified. Therefore, the world reflected in a mirror should differ
in its physical properties from our world. Up until modern times, this
identity was assumed in atomic mechanics and was said to be the law
of the preservation of parity. However, studies by Lie and Young of
the nuclear processes during weak interactions led to experiments that
demonstrated the erroneous position of this law. This result is quite
natural under the actual existence of time directivity, which is confirmed
by direct experiments to be described later. At the same time, one can
never make the opposite conclusion. Numerous investigations of the
observed phenomena of the nonpreservation of parity have demonstrated
the possibility of other interpretations. It is necessary to conclude that
further experiments in the field of nuclear physics will narrow the scope
of possible interpretations to such an extent that the existence of time
directivity in the elementary processes will become quite obvious.

The difference in the world from the mirror image is graphically in-
dicated especially by biology. The morphology of animals and plants
provides many examples of asymmetry, distinguishing right from left, in-
dependently of which hemisphere of the Earth the organism is living in.
Asymmetry of organisms is manifested not only in their morphology.
The chemical asymmetry of protoplasm discovered by Louis Pasteur
demonstrates that the asymmetry constitutes a basic property of life.
The persistent asymmetry of organisms being transmitted to their de-
scendants cannot be random. This asymmetry cannot only be a passive
result of the laws of nature, reflecting the time directivity. Most likely,
under a definite asymmetry, corresponding to the given time pattern,
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an organism acquires an additional viability: i. e., it can use it for the
reinforcement of life processes. Then, on the basis of our fundamental
theorem, we can conclude that in a world with an opposite time pat-
tern, the heart in the vertebrates would be located on the right, the
shells of mollusks would be mainly turned leftward, and in protoplasm
there would be observed an opposite qualitative inequality of the right
and left molecules. It is possible that specially formulated biological ex-
periments will be able to prove directly that life actually uses the time
pattern as an additional source of energy.

Let us now comment on yet another important circumstance, con-
nected with the determination of the time pattern by Equation (1).
Each causal-resultant relationship has a certain spatial direction, the
base vector of which is signified by i. Therefore, in an actual causal
relationship, the pseudo-scalar ic2 will be oriented by the time pattern.
Let us prove that at one point the values for — the cause — and at
another point — the result — should be in opposite directions. In re-
ality, the result in the future will be situated in relation to the cause,
while the cause in the past will be situated in relation to the result.
This means that at the points cause and effect, δt should have opposite
signs, meaning that there should also be an opposite orientation of the
plane perpendicular to i. Then, at a definite i-value we have a change
in the type of the coordinate system, and the expression ic2 will have a
different sign. However, if during the transition from the cause to the
effect we have a change in the sign of i, the sign of c2 will remain un-
changed; and, hence, ic2 will change sign in this case also. This means
that the time pattern is characterized by the values ± ic2 and consti-
tutes a physical process, the model of which can be the relative rotation
of a certain ideal top (gyroscope).

By an ideal gyroscope, we connote a body, the entire mass of which
is located at a certain single distance from the axis. This top can have
an effect on another body through a material axis of rotation and mate-
rial relationships with this axis, the masses of which can be disregarded.
Therefore, the mechanical property of an ideal gyroscope will be equiv-
alent to the properties of a material point having the mass of the gy-
roscope and its rotation. Let us assume that the point with which the
top interacts is situated along the direction of its axis. Let us signify
by j the base vector of this direction and consider it to be a standard
vector. We can tentatively, independent of the type of the coordinate
system, place it in another point: for example, in the direction from
which the rotation of the top appears to be originating — in this case,
in a clockwise direction. The rotation of the top can be described by
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the approximate pseudo-scalar ju, where u equals the linear velocity
of rotation. With such a description and the direction selected by us,
u should be a pseudo-scalar, positive in the left-hand system of coor-
dinates. Let us now consider the motion of a point upon which the
gyroscope axis is acting from the position of the point of its rim. Since
the distance of this point from the plane of the rim is arbitrarily small,
its velocity, computed from the position of the rim in respect to the
radius and the period, will be the same value for u. We can draw on a
sheet of paper the motion of the points of the rim relative to the center
and to the motion of the center from the position of the rim points. The
motion is obtained in one direction if we examine the paper from the
same side: e. g., from above. However, the infinitely small emergence of
a stationary point from the plane of the rim compels us to examine the
rotation from another position: i. e., to examine the paper from beneath.
We obtain a rotation in the opposite direction, as a result of which we
should compare with the gyroscope the approximate pseudo-scalar: i. e.,
ju. This signifies that the time pattern being determined by the values
±ic2 actually has an affinity with the relative rotation, which is deter-
mined by the values ±ju of the same type. Understandably, this formal
analogy does not fully explain the essence of a time pattern. However,
it opens up the remarkable possibility of an experimental study of the
properties of time.

In reality, if into the causal relationship there enters a rotating body,
we can expect that in a system with rotation, the time pattern will
change instead of ±ic2: it becomes equal to ±(ic2 + ju). Let us now
attempt to explain which variations from this can occur in a mechanical
system. For this, it is necessary to refine the concept of cause and effect
in mechanics.

The forces are the causes altering the mutual arrangement of bod-
ies and their quantity of motion. The change in the arrangement of
bodies can lead to the appearance of new forces, and according to the
d’Alembert principle, the variation of a quantity of motion for unit
time, taken with an opposite sign, can be regarded as the force of in-
ertia. Therefore, in mechanics the forces are comprised of the causes
and all possible effects. However, in the movement of a body (1) under
the effect of force F , the force of inertia, −dp/dt, does not constitute a
result. Both of these forces originate at one point. According to axiom
II, owing to this there cannot be a causal-resultant relationship between
them, and they are identical concepts. Therefore, as Kirchhoff operated
in his mechanics, the force of inertia can serve as a determination of the
force F . The force F , applied to point (1), can evoke an effect only in
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another point (2). Let us call this force of the result the effect Φ0 of the
first point upon the second:

Φ0 = F − dp1
dt

=
dp2
dt

. (2)

For the first point, however, it comprises the lost d’Alembert force:

dp1
dt

= F − dp2
dt

.

In conformity with these expressions, we can consider that for one
time, dt, point (1) loses the pulse dp2 which is transmitted to point (2).
In the case for which there is a causal relationship between point (1) and
(2), δt 6=0, and between them there exists the approximate difference
δp2 6=0. When the cause is situated at point (1), the transition of dp2
from point (1) to point (2) corresponds to an increase in the time.
Therefore:

δp2
δt

=
dp2
dt

= Φ0 . (3)

Let us signify by i the unit vector of effect Φ0. Then, according
to (3):

Φ0 = i |Φ0| = i
δp2
δt

= i

∣∣∣∣
δp2
δx

∣∣∣∣
|δx|
δt

.

According to (1), the value |δx|/δt can be replaced by c2 if we ten-
tatively utilize that system of coordinates in which c2 is positive.

Under this condition:

Φ0 = ic2

∣∣∣∣
δp2
δx

∣∣∣∣ . (4)

The factor ic2 comprises a value independent of a time pattern: i. e.,
a force invariant. In reality, during any pattern of time not only the
spatial intervals but also the time intervals should be measured by the
unchanging scales (weights). Therefore, the velocity and, consequently,
also the pulses should not depend on the pattern (course) of time. As
was demonstrated above, in case of the existence of a time pattern ic2
in point (2), there must be in point (1) the time pattern −ic2. This
means that during the effect upon point (2), there must be a counter
effect or a reaction force R0 in point (1):

R0 = −ic2
∣∣∣∣
δp2
δx

∣∣∣∣ . (5)

Thus, the third Newtonian law proves to be the direct result of the
properties of causality and pattern of time. The effect and the counter
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effect comprise two facets of the identical phenomenon, and between
them a time discontinuity cannot exist. In this manner, the law of the
conservation of a pulse is one of the most fundamental laws of nature.

Let us now assume that the time pattern has varied and, instead of
±ic2 it has become equal to ±(ic2 + ju). Then, based on Eqs. (4) and
(5), the following transformation of forces should occur:

Φ = (ic2 + ju)

∣∣∣∣
δp2
δx

∣∣∣∣ , R = −(ic2 + ju)

∣∣∣∣
δp2
δx

∣∣∣∣ .

The additional forces are obtained:

∆Φ = Φ− Φ0 = +j
u

c2
|Φ0| ,

∆R = R−R0 = −j u
c2
|Φ0| .

(6)

Thus, in the causal relationship with a spinning top (gyroscope), we
can expect the appearance of additional forces (6) acting along the axis
of rotation of the top. The proper experiments described in detail in
the following section indicate that, in reality, during the rotation, forces
develop acting upon the axis and depending on the time direction. The
measured value of the additional forces permits us to determine, based
on (6), the value of c2 of the time pattern not only in magnitude but
also in sign: i. e., to indicate the type of the coordinate system in which
c2 is positive. It turns out that the time pattern of our world
is positive in a laevorotary system of coordinates. From this,
we are afforded the possibility of an objective determination of left and
right; the left-hand system of coordinates is said to be that system in
which the time progress is positive, while the right-hand system is one
in which it is negative. In this manner, the time progress linking all of
the bodies in the world, even during their complete isolation, plays the
role of that material bridge concerning the need, of which Gauss [3] has
already spoken, for the coordination of the concepts of left and right.

The appearance of additional forces can perhaps be graphically rep-
resented in the following manner: Time enters a system through the
cause to the effect. The rotation alters the possibility of this inflow,
and, as a result, the time pattern can create additional stresses in the
system. These variations produce the time pattern. From this it follows
that time has energy. Since the additional forces are directed oppo-
sitely, the pulse of the system does not vary. This signifies that time
does not have a pulse, although it possesses energy.

In Newtonian mechanics, c2 =∞. The additional forces according to
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(6) disappear, as should occur in this mechanics. This is natural because
the infinite pattern of time can in no way be altered. Therefore, time
proves to be an imparted fate and invincible force. However, the actual
time has a finite pattern and can be effective, and this signifies
that the principle of time can be reversible. How, in reality, these
effects can be accomplished should be demonstrated by experiments
studying the properties of time.

In atomic mechanics, c2 =0. Equations (6), obtained by a certain
refinement of the principles of Newtonian mechanics, are approximate
and do not give the critical transition at c2 =0. They only indicate that
the additional effects not envisaged by Newtonian mechanics will play
the predominant part. The causality becomes completely intertwined
(confused), and the occurrences of nature will remain to be explained
statistically.

The Newtonian mechanics corresponds to a world with infinitely
stable causal relationships, while atomic mechanics represents another
critical state of a world with infinitely weak causal relationships. Equa-
tions (6) indicate that the mechanics corresponding to the principles
of causality of natural science should be developed from the aspect of
Newtonian mechanics, and not from the viewpoint of atomic mechanics.
In this connection, there can appear features typical for atomic mechan-
ics. For instance, we can expect the appearance of quantum effects in
macroscopic mechanics.

The theoretical concepts expounded here are basically necessary only
in order to know how to undertake the experiments on the study of the
properties of time. Time represents an entire world of enigmatic phe-
nomena, and they can in no way be pursued by logical deliberations.
The properties of time must be gradually explained by physical experi-
ment.

For the formulation of experiments, it is important to have a fore-
knowledge of the value of the expected effects, which depend upon the
value c2 =0. We can attempt to estimate the numerical value of c2 =0,
by using the atomic mechanics and proceeding from dimensionality con-
cepts. The single universal constant which can have the meaning of a
pseudo-scalar is the Planck constant, h. In reality, this constant has the
dimensionality of a moment of a quantity of motion and determines the
spin of elementary particles. Now, utilizing the Planck constant in any
scalar universal constant, it is necessary to obtain a value having the
dimensionality of velocity. It is easy to establish that the expression

c2 =
αe2

h
= α×350km/sec (7)
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comprises a unique combination of this type. Here e equals the charge
of an elementary particle and α equals a certain dimensionless factor.
Then, based on (6), at u=100m/sec, the additional forces will be of
the order of 10−4 or 10−5 (at a considerable α-value) from the applied
forces. At such a value for c2, the forces of the time pattern can easily
be revealed in the simplest experiments not requiring high accuracy of
measurements.

Part II. Experiments on studying the properties of time, and
basic findings

The experimental verification of the above-developed theoretical con-
cepts was started as early as the winter of 1951–1952. From that
time, these studies have been carried on continuously over the course
of a number of years with the active participation by graduate student
V.G. Labeysh. At the present time, they are underway at the labo-
ratory of the Pulkovo Observatory with engineer V.V.Nasonov. The
work performed by Nasonov imparted a high degree of reliability to
the experiments. During the time of these investigations, we accumu-
lated numerous and diversified data, permitting us to form a number
of conclusions concerning the properties of time. We did not succeed in
interpreting all of the material, and not all of the material has a uniform
degree of reliability. Here we will discuss only those data which were
subjected to a recurrent checking and which, from our viewpoint, are
completely reliable. We will also strive to form conclusions from these
data.

The theoretical concepts indicate that the tests on the study of
causal relationships and the pattern of time need to be conducted with
rotating bodies: namely, gyroscopes. The first tests were made in order
to verify that the law of the conservation of a pulse is always fulfilled, and
independently of the condition of rotation of bodies. These tests were
conducted on lever-type weights (scales). At a deceleration of the gyro-
scope, rotating by inertia, its moment of rotation should be imparted to
the weights (scales), causing an inevitable torsion of the suspensions. In
order to avert the suspension difficulties associate with this, the rotation
of the gyroscope should be held constant. Therefore, we utilized gyro-
scopes from aviation automation, the velocity of which was controlled
by a variable 3-phase current with a frequency of the order of 500 cps.
The gyroscope’s rotor turned with this same frequency. It appeared
possible, without decreasing significantly the suspension precision, to
supply current to the gyroscope suspended on weights (scales) with the
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aid of three very thin uninsulated conductors. During the suspension
the gyroscope was installed in a hermetically sealed box, which excluded
completely the effect of air currents. The accuracy of this suspension
was of the order of 0.1–0.2mg. With a vertical arrangement of the
axis and various rotation velocities, the readings of the weights (scales)
remained unchanged. For example, proceeding from the data for one
of the gyroscopes (average diameter D of rotor equals 4.2 cm: rotor
weight Q equals 250 gm), we can conclude that with a linear rotational
velocity, u=70m/sec, the effective force upon the weights (scales) will
remain unchanged, with a precision higher than up to the sixth place. In
these experiments, we also introduced the following interesting theoret-
ical complication: The box with the gyroscope was suspended from an
iron plate, which attracted the electromagnets fastened together with a
certain mass. This entire system was suspended on weights (scales) by
means of an elastic band. The current was supplied to the electromag-
nets with the aid of two very thin conductors. The system for breaking
the current was accomplished separately from the weights (scales). At
the breaking of the circuit, the box with the gyroscope fell to a clipper
fastened to the electromagnets. The amplitude of these drops and the
subsequent rise could reach 2mm. The test was conducted for various
directions of suspension and rotation masses of the gyroscope, at dif-
ferent amplitudes, and at an oscillation frequency ranging from units
to hundreds of cps. For a rotating gyroscope, just as for a station-
ary one, the readings of the weights (scales) remained unchanged. We
can consider that the experiments described substantiate fairly well the
theoretical conclusion concerning the conservation of a pulse in causal
mechanics.

In spite of their theoretical interest, the previous experiments did
not yield any new effects capable of confirming the role of causality
in mechanics. However, in their fulfillment it was noted that in the
transmission of the vibrations from the gyroscope to the support of
the weights (scales), variations in the readings of the weights (scales)
can appear, depending on the velocity and direction of rotation of the
gyroscopes. When the vibrations of the weights (scales) themselves
begin, the box with the gyroscope discontinues being strictly a closed
system. However, the weights (scales) can go out of equilibrium if the
additional effect of the gyroscope developing from rotation proves to
be transferred from the shaft of the gyroscopes to the weights’ [scales’]
support. From these observations, we developed a series of tests with
these gyroscopes.

In the first type, the vibrations were due to the energy of the rotor



202 The Abraham Zelmanov Journal — Vol. 5, 2012

and its pounding in the bearings, depending on the clearance in them. It
is understandable that the vibrations interfere with accurate suspension.
Therefore, it was necessary to abandon the precision weights (scales) of
the analytical type and convert to engineering weights (scales), in which
the ribs of the prisms contact small areas having the form of caps.
Nevertheless, in this connection we managed to maintain an accuracy
of the order of 1mg in the differential measurements. The support areas
in the form of caps are also convenient by virtue of the fact that with
them we can conduct the suspension of gyroscopes rotating by inertia.

A gyroscope suspended on a rigid support can transmit through a
yoke its vibrations to the support of the weights (scales). With a certain
type of vibration, which was chosen completely by feel, there occurred
a considerable decrease in the effect of the gyroscope upon the weights
(scales) during its rotation in a counterclockwise direction, if we exam-
ined it from above. During the rotation in a clockwise direction, under
the same conditions, the readings of the weights (scales) remained prac-
tically unchanged. Measurements conducted with gyroscopes of varying
weight and rotor radius, at various angular velocities, indicated that a
reduction of the weight, in conformity with (6), is actually
proportional to the weight and to the linear rate of rotation.
For example, at a rotation of the gyroscope (D=4.6 cm, Q=90 gm,
u=25m/sec), we obtained the weight difference of −8mg. With ro-
tation in a clockwise direction, it always turned out that (the weight
difference) = 0. However, with a horizontal arrangement of the axis, in
azimuth, we found the average value =−4mg. From this, we can con-
clude that any vibrating body under the conditions of this experiment
should indicate a reduction in weight. Further studies demonstrated
that this effect is caused by the rotation of the Earth, which will
be discussed in detail later.

Presently, the only fact of importance to us is that during the vi-
bration there develops a new zero reading relative to which with a
rotation in a counterclockwise direction, we obtain a weight
reduction, while during a rotation in a clockwise direction we
obtain a completely uniform increase in weight (+ 4mg). In this
manner, (6) is given a complete, experimental confirmation.

It follows from the adduced data that c2 =550 km/sec. According
to this condition, the vector j is oriented in that direction in which the
rotation appears to be originating in a clockwise direction. This means
that during the rotation of the gyroscope in a clockwise direction it is di-
rected downward. With such a rotation, the gyroscope becomes lighter,
meaning that its additional effect upon the support of the weights is di-
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rected downward: i. e., in respect to the base vector j. This will obtain
in the case in which u and c2 have the same signs. Under our condi-
tion relative to the direction of the base vector j, the pseudo-scalar u
is positive in a left-hand system of coordinates. Consequently, a time
pattern of our world is also positive in a left-hand system. Therefore,
subsequently we will always utilize a left-hand system of coordinates.
The aggregation of the tests conducted then permitted us to refine the
value of c2:

c2 = +700± 50 km/sec in a left-hand system. (8)

This value always makes probable the relationship of the time pat-
tern with other universal constants based on (7) at α=2. Then, the
dimensionless constant of the thin Sommerfield structure becomes sim-
ply a ratio of the two velocities c2/c1, each of which occur in nature.

The tests conducted on weight (scales) with vibrations of a gyroscope
also yield a new basic result. It appears that the additional force of effect
and counter effect can be situated at different points in the system: i. e.,
on the support of the weights (scales) and on the gyroscope. We derive
a pair of forces rotating the balance arm of the weights (scales). Hence,
time possesses not only energy but also a rotation moment
which it can transmit to a system.

A basic checking of the results obtained with the weights (scales)
yields a pendulum in which the body constitutes a vibrating gyroscope
with a horizontal axis suspended on a long fine thread. As in the tests
conducted with the weights (scales), during the rotation of a gyroscope
under quiescent conditions nothing took place and this filament (thread)
did not deflect from the perpendicular. However, at a certain stage of
the vibrations in the gyroscope the filament deflected from the perpen-
dicular, always at the same amount (with a given u-value) and in the
direction from which the gyroscope’s rotation occurred in a counter-
clockwise direction. With a filament length l=2m and u=25m/sec,
the deflection amounted to 0.07mm, which yields, for the ratio of the
horizontal force of the weight, the value 3.5×10−5, sufficiently close to
the results of this suspension.

A significant disadvantage of the tests described is the impossibility
of a simple control over the conditions of vibration. Therefore, it is
desirable to proceed to tests in which the vibrations are developed not
by the rotor but by the stationary parts of the system.

In the weights, the support of the balance arm was gripped by a spe-
cial clamp, which was connected by a flexible cable with a long metal
plate. One end of this plate rested on a ball-bearing, fitted eccentrically
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to the shaft of an electric motor, and was connected by a rubber clamp
with the bearing. The other end of the plate was fastened by a hori-
zontal shaft. Changing the speed of the electric motor and the position
of the cable on the plate, we were able to obtain harmonic oscillations
from the balance arm support of the weights (scales) at any frequency
and amplitude. The guiding devices for raising the balance arm support
during a stopping of the weights eliminated the possibility of horizontal
swaying. For the suspension of the gyroscope, it was necessary to find
the optimal conditions under which the vibration was transmitted to
the rotor and, at the same time, maintain that one end of the balance
arm remain quasi-free relative to the other end, to which the balancing
load was rigidly suspended. Under such conditions, the balance arm can
vibrate freely, rotating around its end, fastened by a weight to a rigid
suspension. Oscillations of this type could be obtained by suspending
the gyroscope on a steel wire 0.15mm in diameter and with a length of
the order of 1–1.5m. With this arrangement, we observed the variation
in the weight of the gyroscope during its rotation around the vertical
axis. It was remarkable that, in comparison with the previous tests,
the effect proved to be of the opposite sign. During the turning of the
gyroscope counterclockwise, we found, not a lightening, but a consid-
erable weight increase. This means that in this case there operates on
the gyroscope an additional force, oriented in a direction from which
the rotation appears to be originating in a clockwise direction. This
result signifies that the causality in the system and the time pattern
introduced a vibration and that the source of the vibration established
the position of the cause. In these tests, a source of vibration is the
non-rotating part of the system, while in the initial model of the tests,
a rotor constituted a source. Transposing in places the cause and the
effect, we alter in respect to them the direction of rotation: i. e., the
sense of base vector j. From this, based on (6), there originates the
change in the sign of the additional forces. In conventional mechanics
all of the forces do not depend entirely on what comprises the source of
the vibration, but also on what is the effect. However, in causal mechan-
ics, observing the direction of the additional forces, we can immediately
state where the cause of the vibrations is located. This means that in
reality it is possible to have a mechanical experiment distinguishing the
cause from the effects.

The tests with the pendulum provided the same result. A gyroscope
suspended on a fine wire, during the vibration of a point of this sus-
pension, deflected in a direction from which its rotation transpired in a
clockwise direction. The vibration of the suspension was accomplished
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with the aid of an electromagnetic device. To the iron plate of a relay
installed horizontally, we soldered a flexible metal rod, on which the
pendulum wire was fastened. Owing to the rod, the oscillations became
more harmonic. The position of the relay was regulated in such a way
that there would not be any horizontal displacements of the suspension
point. For monitoring the control, we connected a direct current, with
which the electromagnet attracted the plate and raised the suspension
point. The position of the filament (thread) was observed with a labora-
tory tube having a scale with divisions of 0.14mm for the object under
observation. Estimating by eye the fractions of this wide division, we
could, during repeated measurements, obtain a result with an accuracy
up to 0.01mm. At a pendulum length l=3.30m and a rotation velocity
u=40m/sec, the deflection of the gyroscope ∆l was obtained as equal-
ing 0.12mm. In order to obtain a value of the additional force ∆Q in
relation to the weight of the rotor (Q=250 gm), it is necessary to intro-
duce a correction for the weight of the gyroscope mounting a=150gm:
i. e., to multiply ∆l/l by (Q+ a)/Q. From this, we derive just that
value of c2 which is represented above (8). In these tests it turned out
that to obtain the effect of deflection of the filament, the end of the
gyroscope shaft, from which the rotation appears to be originating in a
clockwise direction, must be raised somewhat. Hence, in this direction
there should exist a certain projection of force, raising the gyroscope
during the vibrations. In reality, the effect of the deflection turns out
to be even less when we have accomplished a parametric resonance of
the thread with oscillations, the plane of which passed through the gy-
roscope axis. Evidently, the existence of forces acting in the direction
ju intensifies the similarity of ju with the time pattern and facilitates
the transformation ± c2 by ± (ic2 + ju). It is also necessary to comment
that the gyroscope axis needs to be located in the plane of the first verti-
cal. With a perpendicular arrangement of the axis — i. e., in the plane
of the meridian — a certain additional displacement develops. Obvi-
ously, this displacement is created by the force evoked by the Earth’s
rotation, which we mentioned in describing the first experiments of the
vibrations on weights. Let us now return to an explanation of these
forces.

Let us signify by u the linear velocity of the rotation of a point
situated on the Earth’s surface. This point is situated in gravitational
interaction with all other points of the Earth’s volume. Their effect
is equivalent to the effect of the entire mass of the Earth at a certain
average velocity ū, the value of which is located between zero and u at
the equator. Therefore, in the presence of a causal relationship there
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can originate additional forces, directed along the axis of the Earth,
and similar forces acting upon the gyroscope during its rotation with
the velocity (u− ū) relative to the mounting. If the causal occurrences
of the cosmic life of the Earth are associated with the outer layers,
these forces should act upon the surface in the direction from which the
rotation appears to be originating counterclockwise: i. e., toward the
north. Thus, in this case on the Earth’s surface there should operate
the forces of the time pattern:

∆Q =
−j (u− ū)

c2
|Q| , (9)

where j is the Earth’s orthonormal vector directed at south, while Q
is the force of weight. In the interior of the Earth, forces act in the
opposite direction, and according to the law of conservation of mo-
mentum, the Earth’s center does not become displaced. In the polar
regions u< ū, and therefore in both hemispheres ∆Q will be directed
southward. Hence, in each hemisphere there is found a typical parallel
where ∆Q=0. Under the effect of such forces, the Earth will acquire
the shape of a cardioid, extending to the south. One of the parameters
characterizing a cardioid is the coefficient of asymmetry η:

η =
bS − bN
2a

, (10)

where a equals the major semi-axis and bS and bN are the distances of
the poles to the equatorial plane.

On Jupiter and Saturn the equatorial velocity u is around 10 km/sec.
Therefore, on planets with a rapid rotation the factor can be very high
and reach nonconformity with expressions (8) and (9) by several units
of the third place. Careful measurements of photographs of Jupiter
made by the author and D.O.Mokhnach [4] showed that on Jupiter the
southern hemisphere is more extended and η= + 3×10−3 ± 0.6×10−3.
A similar result, only with less accuracy, was also obtained for Saturn:
η=7×10−3± 3×10−3.

The measurements of the force of gravity of the surface of the Earth
and the motion of artificial Earth satellites indicate that there exists a
certain difference of accelerations of gravity in the northern and south-
ern hemispheres: ∆g=bN−bS>0, ∆g/g=3×10−5. For a homogenous
planet this should also be the case for an extended southern hemisphere,
because the points of this hemisphere are located farther from the center
of gravity. The factor η should be of the order of ∆g/g. It is necessary
to stress that the conclusion is in direct contradiction with the adopted
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interpretation of the above-presented data concerning the acceleration
of gravity. The gist of this difference consists in the fact that without
allowance for the forces of the time pattern, the increase in gravity in
the northern hemisphere can be explained only by the presence there
of denser rocks. In this case, the leveled surface of the same value
should regress farther. Identifying the level surface with the surface of
the Earth, it will remain to be inferred that the northern hemisphere
is more extended. However, the sign of η obtained directly for Jupiter
and Saturn provide evidence against this interpretation, containing in
itself a further contradictory assumption concerning the disequilibrium
distribution of the rocks within the Earth.

The sign obtained for the asymmetry of the shapes of planets leads
to the paradoxical conclusion to the effect that the cause of the physical
occurrences within the celestial bodies is situated in the peripheral lay-
ers. However, such a result is possible if, e. g., the energetics of a planet
are determined by its compression. In his studies on the internal struc-
ture of a star [5], the author concluded that the power of stars is very
similar to the power of cooling and compressing bodies. The inadequacy
of the knowledge of the essence of the causal relationships prevents us
from delving into this question. At the same time, we are compelled to
insist on the conclusions which were obtained from a comparison of the
asymmetry of the planets with the forces acting upon the gyroscope.

The direction of the perpendicular on the Earth’s surface is deter-
mined by the combined effect of the forces of gravity, of centrifugal
forces, and of the forces of the time pattern ∆Q operating toward the
north in our latitudes. In the case of a free fall, the effect on the mount-
ing is absent (∆Q=0) and therefore ∆Q=0. As a result, the freely
falling body should deflect from the perpendicular to the south by the
value ∆lS:

∆lS = −∆QN

Q
, (11)

where l equals the height of the body’s fall and ∆QN equals the hor-
izontal component of the forces of the time pattern in the moderate
latitudes. A century or two ago this problem of the deflection of falling
bodies toward the south attracted considerable attention. Already the
first experiments conducted by Hook in January of 1680 at the behest
of Newton for the verification of the deflection of falling bodies eastward
led Hook to the conviction that a falling body deflects not only eastward
but also southward. These experiments were repeated many times and
often led to the same result. The best determinations were made by
engineer Reich in the mine shafts of Freiburg [6]. At l=158m, he ob-
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tained ∆lS=4.4mm and ∆least =28.4mm. These deflections agree well
with the theory. Based on (11) from these determinations, it follows
that

∆QN

Q
= 2.8×10−5 at ϕ = 48◦, (12)

which agrees well with our approximate concepts concerning the asym-
metry of the Earth’s shape. The experiments on the deflection of falling
bodies from a perpendicular are very complex and laborious. The inter-
est in these tests disappeared completely after Hagen in the Vatican [7]
with the aid of an Atwood machine obtained a deflection eastward in
excellent agreement with the theory, but he did not derive any deflec-
tion southward. On the Atwood machine, owing to the tension of the
filament, the eastward deflection decreases by only one half. However,
the southward deflection during the acceleration equals 1/25 (as was the
case for Hagen) and, according to Eqs. (9) and (11), it should decrease
by 25 times. Therefore, the Hagen experiments do not refute to any
extent the effect of the southward deflection.

Let us now return to the occurrences developing during the vibra-
tion of a heavy body on the surface of the Earth. The causal-resultant
relationship within the Earth creates on the surface, in addition to the
standard time pattern ± ic2, the time pattern ±

[
ic2− j (u− ū)

]
. There-

fore, on the surface of the Earth, on a body with which a cause is
connected, there should act the additional force ∆Q, directed north-
ward along the axis of the Earth and being determined by (9). In the
actual place where the effect is located, there should operate a force
of opposite sign: i. e., southward. This means that during vibrations
a heavy body should become lighter. In the opposite case, where the
source of vibration is connected with the mounting, the body should
become heavier. In a pendulum, during a vibration of the suspension
point, there should occur a deflection toward the south. These phenom-
ena have opened up the remarkable possibility not only of measuring
the distribution of the forces of the time pattern of the surface of the
Earth but also of studying the causal relationships and the properties of
time by the simplest mode, for the conventional bodies, without difficult
experiments with gyroscopes.

The tests on the study of additional forces caused by the Earth’s
rotation have the further advantage that the vibration of the point of the
mounting cannot reach the body itself. The damping of the vibrations
is necessary in order to express better the difference in the positions of
cause and effect. Therefore, it is sufficient to suspend a body on weights
on a short rubber band, assuring an undisturbed mode of operation of
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the weights during the vibrations. In a pendulum, one should use a fine
capron thread. In the remaining objects the tests were conducted in the
same way as with the gyroscopes.

In the weights, during vibrations of the mounting of the balance
arm, an increase actually occurs in the weights of a load suspended on
an elastic. From the results of many experiments it was proved that
the increase in the weight — i. e., the vertical component of the addi-
tional force ∆QZ — is proportional to the weight of the body Q. For
Pulkovo, ∆QZ/Q=2.8×10−5. The horizontal components, ∆QS, were
determined from the deflection of pendulums of various length (from 2
to 11 meters) during the vibration of a suspension point. During such
vibrations the pendulums, in conformity with the increased load of the
weights, deflected southward. For example, at l=3.2m, we obtained
∆l=0.052mm. From this, ∆QS/Q=∆lZ/l=1.6×10−5, which corre-
sponds fully to the Reich value [6] found for the lower latitude. If the
force ∆Q is directed along the Earth’s axis, there should be fulfilled the
condition: ∆QS/QZ = tanϕ, where ϕ equals the latitude of the site of
the observations. From the data presented, it follows that tanϕ=1.75,
which completely conforms with the latitude at Pulkovo.

Similar tests were made for a higher latitude in the city of Kirovsk,
and here also a good agreement with the latitude was obtained. For
the weights and the pendulums, the amplitudes of the vibrations of the
mounting point were of the order of tenths of a millimeter, while the
frequency changed within the limits of tens of cycles per second.

The measurements conducted at various latitudes of the Northern
Hemisphere demonstrated that, in reality, there exists a parallel
where the forces of time are lacking: ∆Q=0 at ϕ=73◦05′. Ex-
trapolating the data from these measurements, we can obtain for the
pole the estimation ∆Q/Q=6.5×10−5. Having taken the value c2 found
from the tests conducted with a gyroscope (8), let us find from this for
the pole: ū≃ 45m/sec. At the equator the velocity of the Earth’s rota-
tion is 10 times higher. Therefore, the indicated u-value can prove to
be less than that expected. However, it is necessary to have it in mind
that presently we do not have the knowledge of the rules of combining
the time pattern which are necessary for the strict calculation for the ū.
Taking into account the vast distance in the kinematics of the rotations
of a laboratory gyroscope and of the Earth, we can consider the results
obtained for both cases as being in very good agreement.

On the weights (scales), we conducted a verification of the predicted
variation in the sign, when the load itself becomes a source of vibration.
For this, under the mounting area of the balance arm we introduce a
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rubber lining, and in place of the load on the elastic, we rigidly suspend
an electric motor with a flywheel which raises and lowers a certain load.
In the case of such vibrations, the entire linkage of the balance arm of
the weights remained as before. At the same time, we did not obtain
an increase in the weight, but a lightening of the system suspended to
the fluctuating end of the balance arm. This result excludes completely
the possibility of the classic explanation of the observed effects and
markedly indicates the role of causality.

In the experiments with vibrations on weights (scales) the variation
in the weight of a body, ∆QZ, occurs in jumps, starting from a certain
vibration energy. With a further increase in the frequency of the vi-
brations, the variation in the weight remains initially unchanged, then
increases by a jump in the same value. In this manner, it turns out
that in addition to the basic separating stage ∆QZ, that good harmonic
state of the oscillations, we can observe a series of quantized values:
1
2∆Q, ∆Q, 2∆Q, 3∆Q, . . . , corresponding to the continuous variation
in the frequency of vibrations. From the observations, it follows that the
energy of the vibrations of the beginning of each stage evidently forms
such a series. In other words, to obtain multiple values, the frequen-
cies of the vibrations must be

√
2,

√
3, etc. The impression gained is

that weights in the excited stage behave like weights without vibrations:
the addition of the same energy of vibrations leads to the appearance
of the stage ∆QZ. However, we have not yet managed to find a true
explanation of this phenomenon.

The appearance of the half quantum number remains quite incom-
prehensible. These quantum effects also occurred in the tests conducted
with pendulums. Subsequently, it turned out that the quantum state of
the effects is obtained in almost all of the tests. It should be noted that
with the weights, we observed yet another interesting effect, for which
there is no clear explanation. The energy of the vibrations, necessary
for the excitation of a stage, depends upon the estimate of the balance
arm of the weights (scales). The energy is minimal when the load on
the elastic is situated to the south of the weights’ (scales’) supports,
and maximal when it is located to the north. The tests conducted with
vibrations have the disadvantage that the vibrations always affect, to
some extent, the accuracy of the measuring system. At the same time,
in our tests vibrations were necessary in order to establish the position
of the causes and effects. Therefore, it is extremely desirable to find
another method of doing this.

For example, we can pass a direct electric current through a long
metal wire, to which the body of the pendulum is hung. The current
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can be introduced through a point of the suspension and passed through
a very fine wire at the body of the pendulum without interfering with
its oscillations. The Lorentz forces, the interaction of current, and the
magnetic field of the Earth operated in the first vertical and cannot
cause a meridianal displacement of interest to us. These experiments
were crowned with success. Thus, in starting from 15V and a current of
0.03 amps, there appeared a jump-like deflection toward the south by an
amount of 0.024mm, which was maintained during a further increase of
the voltage up to 30V. To this deviation there corresponds the relative
displacement ∆l/l=0.85×10−5, which is almost exactly half of the stage
observed during the vibrations. In the case of a plus voltage at the point
of the suspension, we obtained a similar deflection northward. In this
manner, knowing nothing of the nature of the electrical current, we
could already conclude, from only a few of these tests, that the cause
of the current is the displacement of the negative charges.

It turns out that in the pendulum, the position of the cause and effect
can be established even more simply by heating or cooling the point of
the suspension. For this, the pendulum must be suspended on a metal
wire which conducts heat well. The point of the suspension was heated
by an electrical coil. During a heating of this coil until it glowed, the
pendulum deflected southward by half of the stage, as during the tests
conducted with the electrical current. With a cooling of the suspension
point with dry ice, we obtained a northward deflection. A southward
deflection can also be obtained by cooling the body of the pendulum,
such as placing it in a vessel containing dry ice. In these experiments,
only under quite favorable circumstances did we succeed in obtaining
the full effect of the deflection. It is obvious that the vibrations have
a certain basic advantage. It is likely that not only dissipation of the
mechanical energy is significant during the vibrations; it is probable
that the forces of the vibrations directed along ju cause the appearance
of additional forces.

In the study of the horizontal forces, the success in the heat exper-
iments permitted us to proceed from long pendulums to a much more
precise and simpler device: namely, the torsion balance. We applied
torsion balances of optimal sensitivity, for which the expected deflec-
tion was 5–20 degrees. We utilized a balance arm of apothecary weights
(scales), to the upper handle of which we soldered a special clamp, to
which was attached a fine tungsten wire with a diameter of 35 microns
and a length of around 10 cm. The higher end of the wire was fastened
by the same clamp to a stationary support. To avoid the accumulation
of electrical charges and their electrostatic effect, the weights (scales)
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were reliably grounded through the support. From one end of the bal-
ance arm we suspended a metal rod along with a small glass vessel, into
which it entered. At the other end was installed a balancing load of
the order of 20 grams. The scale, divided into degrees, permitted us to
determine the turning angle of the balance arm. The vessel into which
the metal rod entered was filled with snow or water with ice. Thereby,
there developed a flow of heat along the balance arm to the rod, and the
weights (scales), mounted beforehand in the first vertical, were turned
by this end toward the south. The horizontal force ∆QS was computed
from the deflection angle a with the aid of the formula:

a =
T 2 − T 2

0

4π2

g

2l

(
∆Q

Q

)
, (13)

where T equals the period of the oscillation of the torsion balances;
T0 equals the period of oscillations of one balance arm, without loads;
g equals the acceleration of gravity; and 2l equals the length of the
balance arm: i.e., between the suspended weights. In this equation
the angle a is expressed in radians. For example, in the weights with
l=9.0 cm, T = 132 seconds, and T0 =75 seconds, we observed a south-
ward deflection by an angle of 17.5◦. Thence, based on (13), it follows
that ∆QS/Q=1.8×10−5 is in good agreement with the previously de-
rived value of the horizontal forces. Half and multiple displacements
were also observed in these experiments conducted with the torsion bal-
ances. Another variation of the experiment was the heating, by a small
alcohol lamp, of a rod suspended together with a vessel containing ice.
The same kind of alcohol lamp was placed at the other end of the bal-
ance arm with a compensating weight, but in such a way that it could
not heat the balance arm. During the burning of both alcohol lamps,
the weights did not deviate from equilibrium. In these experiments we
invariably obtained the opposite effect: i. e., a turning to the north of
the end of the balance arm with the rod.

It is necessary to mention one important conclusion which follows
from the combination of the occurrences which have been observed. In
the case of the effect on the mounting, this might not influence a heavy
body; and at the same time, forces, applied to each point of it, develop
in the body: i. e., mass forces and, hence, identical to the variation in
the weight. This signifies, by influencing the mounting, where the forces
of the attraction are located, comprising a result of the weight, we can
obtain a variation in the weight, i. e., a change in the cause. Therefore,
the tests conducted indicate a distinct possibility of reversing the causal
relationships.
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The second cycle of tests on studying the qualities of time began as
a result of the observations of quite strange circumstances, interrupt-
ing a repetition of the experiments. As early as the initial experiments
with the gyroscopes, it was necessary to face the fact that sometimes
the tests could be managed quite easily, and sometimes they proved to
be fruitless, even with a strict observance of the same conditions. These
difficulties were also noted in the old experiments on the southward
deflection of falling bodies. Only in those tests in which, within wide
limits, it is possible to intensify the causal effect — as, e. g., during the
vibrations of the mounting of the weights (scales) or of the pendulum
— can we almost always attain a result. Evidently, in addition to the
constant pattern c2, in the case of time, there also exists a variable
property which can be called the density or intensity of time.
In a case of low density it is difficult for time to influence the mate-
rial systems, and a requirement arises for an intensive emphasis of the
causal-resultant relationship in order that a force caused by the time
pattern should appear. It is possible that our psychological sensation
of empty or substantive time has not only a subjective nature but also,
similarly to the sensation of the flow of time, an objective physical basis.

Evidently many circumstances exist affecting the density of time in
the space surrounding us. In late autumn and in the first half
of winter all of the tests could be easily managed. However,
in summer these experiments became difficult to such an ex-
tent that many of them could not be completed.. Probably, in
conformity with these conditions, the tests in the high altitudes can
be performed much more easily than in the south; in addition to these
regular variations, there often occur some changes in the conditions re-
quired for the success of the experiments: these transpired in the course
of one day or even several hours. Obviously, the density of time changes
within broad limits, owing to the processes occurring in nature, and our
tests utilized a unique instrument to record these changes. If this be
so, it strongly suggests the possibility of having one material
influence after another through time. Such a relationship could
be foreseen, since the causal-resultant phenomena occurred not only in
time but also with the aid of time. Therefore, in each process of nature
time can be extended or formed. These conclusions could be confirmed
by a direct experiment.

Since we are studying the phenomenon of such a generality as time,
it is evident that it is sufficient to take the simplest mechanical process
in order to attempt to change the density of time. For example, using
any motor, we can raise and lower a weight or change the tension of
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a tight elastic band. We obtain a system with two poles, a source of
energy and its outflow: i. e., the causal-resultant dipole. With the aid
of a rigid transmission, the pole of this dipole can be separated for
a fairly extensive distance. We will bring one of these poles close to
a long pendulum during the vibrations of its point of suspension. It
is necessary to tune the vibrations in such a way that the full effect
of southward deflection would not develop, but only the tendency for
the appearance of this effect. It turns out that this tendency increases
appreciably and converts even to the complete effect if we bring near to
the body of the pendulum or to the suspension point that pole of the
dipole where the absorption of the energy is taking place. However, with
the approach of the other pole (of the motor), the appearance of the
effect of southern deflection in the pendulum invariably became difficult.
In the case of a close juxtaposition of the poles of the dipole, their
influence on the pendulum practically disappeared. Evidently in this
case, a considerable compensation of their effects occurs. It turns out
that the effect of the causal pole does not depend on the direction
along which it is installed relative to the pendulum; rather its effect
depends only on the distance (spacing). Repeated and careful
measurements demonstrated that this effect diminishes, not inversely
proportional to the square of the distance, as in the case of force fields,
but inversely proportional to the first power of the distance.
In the raising and lowering of a 10-kg weight suspended through a unit
distance, its influence was sensed at a distance of 2–3 meters from the
pendulum. Even the thick wall of the laboratory did not shield
this effect. It is necessary to comment that all of these tests, similarly
to the previous ones, also were not always successful.

The results indicate that the more proximate to the system with
the causal-resultant relationship, the density of time actually changes.
Near the motor there occurs a thinning (rarefaction of time),
while near the energy receiver its compaction takes place. The
impression is gained that time is extended by a cause and, con-
trariwise, it becomes more advanced in that place where the
effect is located. Therefore, in the pendulum, assistance is obtained
from the receiver, while interference arises from the part on the motor.
By these conditions we might also explain the easy accomplishment of
these experiments in winter and in northern latitudes, while in summer
and in the south it is difficult to perform the tests. The fact of the
matter is that in our latitude in winter are located the effects of the dy-
namics of the atmosphere of the southern latitudes. This circumstance
can assist the appearance of the effects of the time pattern. However,
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generally and particularly in summer the heating by solar rays
creates an atmosphere loader, interfering with the effects.

The effect of time differs basically from the effect of force fields. The
effect of the causal pole on the device (pendulum) immediately creates
two equal and opposite forces, applied to the body of the pendulum and
the suspension point. There occurs a transmission of energy, without
momentum, and, hence, also without delivery to the pole. This circum-
stance explains the reduction of the influences inversely proportional to
the first power of the distances, since according to this law an energy
decrease takes place. Moreover, this law could be foreseen, simply by
proceeding from the circumstance of time as expressed by turning, and
hence with it a necessity to link the plane, passing through the pole with
any orientation in space. In the case of the force lines emerging from
the pole, their density decreases in inverse proportion to the square of
the distance; however, the density of the planes will diminish accord-
ing to the law of the first power of the distance. The transmission of
energy without momentum (pulse) should still have the following very
important property: Such a transmission should be instantaneous: i. e.,
it cannot be propagating because the transmission of the pulse is as-
sociated with propagation. This circumstance follows from the most
general concepts concerning time. Time in the universe is not propa-
gated but appears immediately everywhere. On a time axis the entire
universe is projected by one point. Therefore, the altered properties of
a given second will appear everywhere at once, diminishing according
to the law of inverse proportionality of the first power of the distance.

It seems to us that such a possibility of the instantaneous transfer
of information through time should not contradict the special theory of
relativity — in particular, the relativity of the concept of simultaneity.
The fact is that the simultaneity of effects through time is realized in
that advantageous system of coordinates with which the source of these
effects is associated.

The possibility of communications through time will probably help
to explain not only the features of biological relationship but also a num-
ber of puzzling phenomena of the psychics of man. Perhaps instinctive
knowledge is obtained specifically in this manner. It is quite likely that
in this same way are realized also the phenomena of telepathy: i. e., the
transmission of thought over a distance. All these relationships are not
shielded and hence have the property for the transmission of influences
through time.

Further observations indicate that in the causal-resultant dipoles a
complete compensation of the effect of its poles does not take place. Ob-
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viously, in the process there occurs the absorption or output of certain
qualities of time. Therefore, the effect of the process could be observed
without a preliminary excitation of the system.

The previously applied torsion weights (balances) were modified in
such a manner that, when possible, we would increase the distance be-
tween the weights suspended on the balance arm. This requirement was
realized with a considerable lengthening (up to 1.5m) of the suspension
filament of one of the weights. As a result, the torsion balances came
to resemble a gravitational variometer, only with the difference that in
them the balance arm could be freely moved around a horizontal axis.
The entire system was well grounded and shielded by a metal housing
in order to avert the electrostatic effects. The masses of the weights
were of the order of 5–20 grams. In the realization of any reversible
process near one of the weights, we obtained a turning of the balance
arm toward the meridian by a small angle a of the order of 0.3◦, with
a sensitivity of the weights (scales) corresponding to a slewing by 9◦

for the case of the effects of the forces of a time pattern of full mag-
nitude. In this manner, the forces which were occurring proved to be
quite similar to those previously investigated. They act along the axis
of the Earth and yield the same series of quantized values of the slewing
angle: 1

2 a, a, 2a, . . . It turns out that the vertical components of these
forces can be observed in the analytical scales, if we separate the weights
in them far enough, by means of the same considerable lengthening of
the suspension filament of one of the weights.

These tests indicated the basic possibility of the effect through time
of an irreversible process upon a material system. At the same time,
the very low value of the forces obtained testifies to a certain construc-
tive incorrectness of the experiment, owing to which there takes place
an almost complete compensation of the forces originating in the sys-
tem. As a result, only a small residue of these forces acts on the sys-
tem. Obviously, in our design, during the effect upon one weight, there
also develops an effect upon the second weight, stopping the turning
of the torsion balances. Most likely, this transmission of the effect to
the second weight occurs through the suspension point. In reality, the
appearance of forces of the time pattern in one of the weights signifies
the transformation of the forces of the weight of this load and its re-
action in the mounting point to a new time pattern, associated with
the Earth’s rotation. The transformation of the time pattern in the
suspension point of the torsion balances can also cause the transforma-
tion of all of the forces acting here, signifying also the reaction of the
second weight. However, the appearance of an additional reaction re-
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quires the appearance of the additional force of the weight of the second
load. Therefore, in this design, during the effect upon one load there
also originates an effect upon the second load, stopping the turning of
the torsion balances. The concept discussed indicates that to obtain
substantial effect in the torsion balances, it is necessary to introduce an
abrupt asymmetry in the suspension of the loads.

As a result of a number of tests, the following design of the asym-
metrical torsion balances proved successful: one cylindrical load of con-
siderable weight was chosen, around 300 grams. This main weight was
suspended from the permanent filament made of capron, with a length
of around 1.5 meters and a diameter of 0.15mm. To this weight there
was rigidly fastened, arranged horizontally, a light-weight metal plate
around 10 cm in length. The free end of this plate was supported by a
very thin capron filament fastened at the same point as the main fila-
ment. From this free end of the plate, we suspended on a long thin wire
a weight of the order of 10 grams. For damping the system the main
weight was partly lowered into a vessel containing machine oil. By a
turn at the suspension point, the horizontal plate was set perpendicular
to the plane of the meridian.

Let us now assume that in the system a force has developed affecting
only the main weight in the plane of the meridian: i. e., perpendicularly
to the plate. This force deflects the main weight by a certain angle a.
The free end of the plate with a small load will also be deflected by
this same angle. Therefore, upon the small load there will act a hori-
zontal force, tending to turn the plate toward the plane of the meridian
and equalizing the weight of the small load multiplied by the angle a.
Since the deflection angle a equals the relative change in the weight, a
force equaling the additional force of the time pattern for the weight
of a small load will act on the small load. Therefore, the turning an-
gle of the torsion balances can be computed according to the previous
(13), assuming that in it T0 =0. The same turning, but in an oppo-
site direction, should be obtained during the effect upon only one small
load. This condition was confirmed by experiments with strong influ-
ences from close distances. However, it turned out that a heavy weight
absorbed the effect better than a small weight. Therefore, weak remote
forces are received (absorbed) by only one large load, which permitted
us to observe the effects upon the device at very considerable distances
from it, of the order of 10–20 meters. However, the optimal distance in
these tests was around 5 meters.

The asymmetrical torsion balances described proved to be a suc-
cessful design. The calculated angle of their turning under the effect
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of additional forces of the time pattern should be of the order of 14◦.
In the case of a contactless effect over a distance, we obtained large
deflections, which reached the indicated values. In these tests, as in the
previous ones, we once again observed the discrete state of the stable
deflections with a power of one fourth of the full effect: i. e., 3◦5′.

A variety of processes caused a deflection of the weights: heating of
the body; burning of an electric tube; cooling of a previously heated
body; the operation of an electrical battery, closed through resistance;
the dissolving of various salts in water; and even the movement of a
man’s head. A particularly strong effect is exerted by a nonstationary
process: e. g., the blinking of an electric bulb. Owing to the processes
occurring near the weights and in nature, the weights behave themselves
very erratically. Their zero point often becomes displaced, shifting by
the above-indicated amounts and interfering considerably with the ob-
servations. It turned out that the balances can be shielded, to
a considerable extent, from these influences by placing near
them an organic substance consisting only of right-handed
molecules: for example, sugar. The left-handed molecules —
e. g., turpentine — evidently cause the opposite effect.

In essence, the tests conducted demonstrate that it is possible to
have the influence through time of one process upon another. In reality,
the appearance of forces turning the torsion balances alters the potential
energy of the balances. Therefore, in principle, there should take place
a change in the physical process which is associated with them.

At a session of the International Astronomical Union in Brussels in
the fall of 1966, the author presented a report concerning the physical
features of the components of double stars. In binary systems a satellite
constitutes an unusual star. As a result of long existence, a satellite be-
comes similar to a principal star in a number of physical aspects (bright-
ness, spectral type, radius). At such great distances the possibility is
excluded that the principal star will exert an influence upon its satellite
in the usual manner: i. e., through force fields. Rather, the binary stars
constitute an astronomical example of the effect of the processes in one
body upon the processes in another, through time.

Among the many tests conducted, we should mention the observa-
tions which demonstrated the existence of yet another interesting fea-
ture in the qualities of time. It turns out that in the experiments with
the vibrations of the mounting point of the balances or of the pendulum,
additional forces of the time pattern which developed did not disappear
immediately with the stoppage of the vibrations, but remained in the
system for a considerable period. Considering that they decreased ac-
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cording to the exponential law e−t/t0 , estimations were made of the
time t0 of their relaxation, which was shown not to depend on the mass
of the body but upon its density ρ. We obtained the following ap-
proximate data: for lead, ρ=11 g/cm3, t0 =14 seconds; for aluminum,
ρ=2.7 g/cm3, t0 =28 seconds; for wood ρ=0.5 g/cm3, t0 =70 seconds.
In this manner it is possible that t0 is inversely proportional to the
square root of the body’s density. It is curious that the preservation of
the additional forces in the system, after the cessation of the vibrations,
can be observed in the balances in the simplest manner. Let us imagine
balance scales in which one of the weights is suspended on rubber. Let
us take this weight with one hand and, with the pressure of the other
hand upon the balance arm, replace the effect of the weight taken from
it. We will shake the removed weight with one hand and, with the pres-
sure of the other hand upon the balance arm, replace the effect of the
weight taken from it. We will shake the removed weight for a certain
time (around a minute) on the rubber, and then we will place it back
upon the scales. The scales will indicate the gradual lightening of this
load, in conformity with the above-listed values for t0. It is understand-
able that in this test it is necessary to take measures in order that one’s
hand does not heat the balance arm of the scales. In place of a hand, the
end of the balance arm from which the weight is taken can be held by a
mechanical clamp. Sometimes this amazingly simple test can be accom-
plished quite easily, but there are days when, similarly to certain other
tests, it is achieved with difficulty or cannot be accomplished at all.

Based on the above-presented theoretical concepts and all of the
experimental data, the following general inferences can be made:

1. The causal states, derived from three basic axioms, of the effect
concerning the properties of a time pattern are confirmed by the
tests. Therefore, we can consider that these axioms are substanti-
ated by experiment. Specifically, we confirm axiom II concerning
the spatial non-overlapping of causes and effects. Therefore, the
force fields transmitting the influences should be regarded as a sys-
tem of discrete, non-overlapping points. This finding is linked with
the general philosophical principle of the possibility of cognition
of the world. For the possibility of at least a marginal cognition,
the combination of all material objects should be a calculated set:
i.e, it should represent a discrete state, being superimposed on the
continuum of space.

As concerns the actual results obtained during the experimental jus-
tification of the axiom of causality, among them the most important are
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the conclusions concerning the finiteness of the time pattern, the possi-
bility of partial reversal of the causal relationships, and the possibility
of obtaining work owing to the time pattern.

2. The tests proved the existence of the effects through time of one
material system upon another. This effect does not transmit a
pulse (momentum), meaning it does not propagate but appears
simultaneously in any material system. In this manner, in prin-
ciple it proves possible to have a momentary relationship and a
momentary transmission of information. Time accomplishes a re-
lationship between all phenomena of nature and participates ac-
tively in them.

3. Time has diverse qualities, which can be studied by experiments.
Time contains the entire universe of still unexplored occurrences.
The physical experiments studying these phenomena should grad-
ually lead to an understanding of what time represents. However,
knowledge should show us how to penetrate into the world of time
and teach us how to affect it.
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Abstract: We develop the Elastodynamics of the Spacetime Con-
tinuum (STCED) based on the analysis of the deformations of the
STC within a general relativistic and continuum mechanical frame-
work. We show that STC deformations can be decomposed into a
massive dilatation and a massless wave distortion reminiscent of wave-
particle duality. We show that rest-mass energy density arises from
the volume dilatation of the STC. We derive Electromagnetism from
STCED and provide physical explanations for the electromagnetic po-
tential and the current density. We derive the Klein-Gordon equation
and show that the quantum mechanical wavefunction describes longi-
tudinal waves propagating in the STC. The equations obtained reflect
a close integration of gravitational and electromagnetic interactions.
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§1. Introduction. The theory of General Relativity initially pro-
posed by Einstein [1] is a theory of gravitation based on the geometry
of the spacetime continuum (STC ). The geometry of the spacetime
continuum is determined by the energy-momentum present in the STC.
This can be represented by the relation

-Energy-momentum STC Geometry

or, in terms of its mathematical representation,

-T µν Gµν

whereGµν is the Einstein tensor and T µν is the energy-momentum stress
tensor. The spacetime continuum is thus warped by the presence of
energy-momentum. This is a physical process as shown by the deflection
of light by the sun, or the cosmological models resulting in a physical
structure of the universe, derived from General Relativity.

Hence the theory of General Relativity leads implicitly to the propo-
sition that the spacetime continuum must be a deformable continuum.
This deformation is physical in nature. The “vacuum” that is om-
nipresent in Quantum Theory, is the spacetime continuum, made more
evident by the microscopic scale of quantum phenomena. The physical
nature of the spacetime continuum is further supported by the following
evidence:

— The physical electromagnetic properties of the vacuum: character-
istic impedance of the vacuum Zem = 376.73Ω, electromagnetic
permittivity of free space ǫem, electromagnetic permeability of free
space µem.

— A straightforward explanation of the existence and constancy of
the speed of light c: it is the maximum speed at which transverse
deformations propagate in the STC.

— A physical framework for the vacuum of quantum electrodynam-
ics with its constant creation/annihilation of (virtual) particles,
corresponding to a state of constant vibration of the STC due to
the energy-momentum continuously propagating through it.

— A physical framework to support vacuum quantum effects such
as vacuum polarization, zero-point energy, the Casimir force, the
Aharonov-Bohm effect.

The assignment of physical dynamic properties to the spacetime of Gen-
eral Relativity has been considered previously. For example, Sakharov
[2] considers a“metrical elasticity” of space in which generalized forces
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oppose the curving of space. Tartaglia et al have recently explored
“strained spacetime” in the cosmological context, as an extension of the
spacetime Lagrangian to obtain a generalized Einstein equation [3, 4].

Considering the spacetime continuum to be a deformable continuum
results in an alternative description of its dynamics, represented by the
relation

-Energy-momentum STC Deformations

The energy-momentum present in the spacetime continuum, represented
by the energy-momentum stress tensor, results in strains in the STC,
hence the reference to “strained spacetime”. The spacetime continuum
strains result in displacements of the elements of the spacetime contin-
uum, hence the STC deformations. The spacetime continuum itself is
the medium that supports those deformations. The spacetime contin-
uum deformations result in the geometry of the STC.

This theory is referred to as the Elastodynamics of the Spacetime
Continuum (STCED) (see Millette [5–8]). In this theory, we analyse
the spacetime continuum within the framework of Continuum Mechan-
ics and General Relativity. This allows for the application of continuum
mechanical methods and results to the analysis of the STC deforma-
tions.

Hence, while General Relativity can be described as a top-down the-
ory of the spacetime continuum, the Elastodynamics of the Spacetime
Continuum can be described as a bottom-up theory of the spacetime
continuum. STCED provides a fundamental description of the micro-
scopic processes underlying the spacetime continuum. The relation be-
tween STCED and General Relativity is represented by the diagram

-Energy-momentum STC Geometry
Q
Q
Q
QQs

6

STC Deformations

The combination of all deformations present in the spacetime continuum
generates its geometry. STCED must thus be a description complemen-
tary to that of General Relativity, which is concerned with modeling the
resulting geometry of the spacetime continuum rather than the deforma-
tions generating that geometry. The value of STCED is that it provides
a microscopic description of the fundamental STC processes expected
to reach down to the quantum level.
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§1.1. Outline of the paper. We start by demonstrating from first
principles that spacetime is strained by the presence of mass. In addi-
tion, we find that this provides a natural decomposition of the space-
time metric tensor and of spacetime tensor fields, both of which are
still unresolved and are the subject of continuing investigations (see for
example [9–13]).

Based on that analysis from first principles of the effect of a test
mass on the background metric, we obtain a natural decomposition of
the spacetime metric tensor of General Relativity into a background
and a dynamical part. We find that the presence of mass results in
strains in the spacetime continuum, and that those strains correspond
to the dynamical part of the spacetime metric tensor. We note that these
results are considered to be local effects in the particular reference frame
of the observer. In addition, the applicability of the proposed metric to
the Einstein field equations remains open to demonstration.

The presence of strains in the spacetime continuum as a result of
the applied stresses from the energy-momentum stress tensor is an ex-
pected continuum mechanical result. The strains result in a deformation
of the continuum which can be modeled as a change in the underlying
geometry of the continuum. The geometry of the spacetime contin-
uum of General Relativity resulting from the energy-momentum stress
tensor can thus be seen to be a representation of the deformation of
the spacetime continuum resulting from the strains generated by the
energy-momentum stress tensor.

We then derive the Elastodynamics of the Spacetime Continuum by
applying continuum mechanical results to strained spacetime. Based
on this model, a stress-strain relation is derived for the spacetime con-
tinuum. We apply that stress-strain relation to show that rest-mass
energy density arises from the volume dilatation of the spacetime con-
tinuum. Then we propose a natural decomposition of tensor fields in
strained spacetime, in terms of dilatations and distortions. We show
that dilatations correspond to rest-mass energy density, while distor-
tions correspond to massless shear transverse waves. We note that
this decomposition of spacetime continuum deformations into a mas-
sive dilatation and a massless transverse wave distortion is somewhat
reminiscent of wave-particle duality.

From the kinematic relations and the equilibrium dynamic equation
of the spacetime continuum, we derive a series of wave equations: the
displacement, dilatational, rotational and strain wave equations. Hence
we find that energy propagates in the spacetime continuum as wave-like
deformations which can be decomposed into dilatations and distortions.
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Dilatations involve an invariant change in volume of the spacetime con-
tinuum which is the source of the associated rest-mass energy density
of the deformation, while distortions correspond to a change of shape
of the spacetime continuum without a change in volume and are thus
massless. The deformations propagate in the continuum by longitudinal
and transverse wave displacements. Again, this is somewhat reminis-
cent of wave-particle duality, with the transverse mode corresponding
to the wave aspects and the longitudinal mode corresponding to the
particle aspects. A continuity equation for deformations of the space-
time continuum is derived, where the gradient of the massive volume
dilatation acts as a source term. The nature of the spacetime contin-
uum volume force and the inhomogeneous wave equations are areas of
further investigation.

We then investigate the strain energy density of the spacetime con-
tinuum in the Elastodynamics of the Spacetime Continuum by applying
continuum mechanical results to strained spacetime. The strain energy
density is a scalar. We find that it is separated into two terms: the
first one expresses the dilatation energy density (the “mass” longitudi-
nal term) while the second one expresses the distortion energy density
(the “massless” transverse term). The quadratic structure of the energy
relation of Special Relativity is found to be present in the theory. In
addition, we find that the kinetic energy pc is carried by the distor-
tion part of the deformation, while the dilatation part carries only the
rest-mass energy.

Since Einstein first published his Theory of General Relativity in
1915, the problem of the unification of Gravitation and Electromag-
netism has been and remains the subject of continuing investigation (see
for example [23–31] for recent attempts). Electromagnetism is found
to come out naturally from the STCED theory in a straightforward
manner. This theory thus provides a unified description of the space-
time deformation processes underlying general relativistic Gravitation
and Electromagnetism, in terms of spacetime continuum displacements
resulting from the strains generated by the energy-momentum stress
tensor.

We derive Electromagnetism from the Elastodynamics of the Space-
time Continuum based on the identification of the theory’s antisymmet-
ric rotation tensor with the electromagnetic field-strength tensor. The
theory provides a physical explanation of the electromagnetic potential,
which arises from transverse (shearing) displacements of the spacetime
continuum, in contrast to mass which arises from longitudinal (dilata-
tional) displacements. In addition, the theory provides a physical ex-
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planation of the current density four-vector, as the 4-gradient of the
volume dilatation of the spacetime continuum. The Lorentz condition
is obtained directly from the theory. In addition, we obtain a general-
ization of Electromagnetism for the situation where a volume force is
present, in the general non-macroscopic case. Maxwell’s equations are
found to remain unchanged, but the current density has an additional
term proportional to the volume force.

The strain energy density of the electromagnetic energy-momentum
stress tensor is then calculated. The dilatation energy density (the
rest-mass energy density of the photon) is found to be 0 as expected.
The transverse distortion energy density is found to include a longitu-
dinal electromagnetic energy flux term, from the Poynting vector, that
is massless as it is due to distortion, not dilatation, of the spacetime
continuum. However, because this energy flux is along the direction of
propagation (i.e. longitudinal), it gives rise to the particle aspect of the
electromagnetic field, the photon.

We then investigate the volume force and its impact on the equa-
tions of the Elastodynamics of the Spacetime Continuum. First we
consider a linear elastic volume force which leads to equations which
are of the Klein-Gordon type. Based on the results obtained, we then
consider a variation of that linear elastic volume force based on the
Klein-Gordon quantum mechanical current density. We find that the
quantum mechanical wavefunction describes longitudinal wave propa-
gations in the STC corresponding to the volume dilatation associated
with the particle property of an object. The longitudinal wave equation
is then found to correspond to the Klein-Gordon equation with an in-
teraction term of the form A · j, further confirming that the quantum
mechanical wavefunction describes longitudinal wave propagations in
the STC. The transverse wave equation is found to be a new equation
of the electromagnetic field strength Fµν , which includes an interaction
term of the form A×j corresponding to the volume density of the mag-
netic torque (magnetic torque density). The equations obtained reflect
a close integration of gravitational and electromagnetic interactions at
the microscopic level.

This paper presents a linear elastic theory of the Elastodynamics of
the Spacetime Continuum based on the analysis of the deformations of
the spacetime continuum. It is found to provide a microscopic descrip-
tion of gravitational and electromagnetic phenomena and some quantum
results, based on the framework of General Relativity and Continuum
Mechanics. Based on the model, the theory should in principle be able
to explain the basic physical theories from which the rest of physical
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theory can be built, without the introduction of inputs external to the
theory. A summary of the physical phenomena derived from STCED

in this paper are summarized in the conclusion. The direction of the
next steps to further extend this theory are discussed in the concluding
section of this paper.

§1.2. A note on units and constants. In General Relativity and in
Quantum Electrodynamics, it is customary to use “geometrized units”
and “natural units” respectively, where the principal constants are set
equal to 1. The use of these units facilitates calculations since cum-
bersome constants do not need to be carried throughout derivations.
In this paper, all constants are retained in the derivations, to provide
insight into the nature of the equations being developed.

In addition, we use rationalized MKSA units for Electromagnetism,
as the traditionally used Gaussian units are gradually being replaced
by rationalized MKSA units in more recent textbooks (see for exam-
ple [32]). Note that the electromagnetic permittivity of free space ǫem,
and the electromagnetic permeability of free space µem are written with
“em” subscripts as the “0” subscripts are used in STCED constants.
This allows us to differentiate between for example µem, the electromag-
netic permeability of free space, and µ0, the Lamé elastic constant for
the shear modulus of the spacetime continuum.

§1.3. Glossary of physical symbols. This analysis uses symbols
across the fields of continuum mechanics, elasticity, general relativity,
electromagnetism and quantum mechanics. The symbols used need to
be applicable across these disciplines and be self-consistent. A glossary
of the physical symbols is included below to facilitate the reading of this
paper.

α Fine-structure constant.

ǫαβµν Permutation symbol in four-dimensional spacetime.

ǫem Electromagnetic permittivity of free space (STC ).

ε Volume dilatation.

εµν Strain tensor.

ηµν Flat spacetime metric tensor.

Θµν Symmetric electromagnetic stress tensor.

κ0 Bulk modulus of the STC.

λ0 Lamé elastic constant of the STC.

λc Compton wavelength of the electron.
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µ0 Shear modulus Lamé elastic constant of the STC.

µem Electromagnetic permeability of free space (STC ).

µB Bohr magneton.

ρ Rest-mass density.

ρ0 STC density.

̺ Charge density.

σµν Stress tensor.

φ Phase of the quantum mechanical wavefunction.

ϕ0 STC electromagnetic shearing potential constant.

ωµν Rotation tensor.

ψ Quantum mechanical wavefunction.

A Vector potential.

Aµ Four-vector potential.

Āµ Reduced four-vector potential.

B Magnetic field.

c Speed of light.

e Electrical charge of the electron.

es Strain scalar.

eµν Strain deviation tensor.

E Electric field.

Ê Total energy density.

E Strain energy density of the spacetime continuum.

Eµναβ Elastic moduli tensor of the STC.

Fµν Electromagnetic field strength tensor.

gµν Metric tensor.

G Gravitational constant.

h Planck’s constant.

~ Planck’s reduced constant.

j Current density vector.

jµ Current density four-vector.

j̄µ Reduced current density four-vector.

k0 Elastic force constant of the STC volume force.

kL STC longitudinal dimensionless ratio.
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kT STC transverse dimensionless ratio.

m Mass of the electron.

p Momentum 3-vector.

p̂ Momentum density.

R Contracted Ricci curvature tensor.

Rµν Ricci curvature tensor.

Rµ
ναβ Curvature tensor.

S Poynting vector (electromagnetic field energy flux).

Sµ Poynting four-vector.

ts Stress scalar.

tµν Stress deviation tensor.

T µν Energy-momentum stress tensor.

uµ Displacement four-vector.

Uem Electromagnetic field energy density.

xµ Position four-vector.

Xν Volume (or body) force.

Zem Characteristic impedance of the vacuum (STC ).

§2. Elastodynamics of the Spacetime Continuum

§2.1. Strained spacetime and the natural decomposition of
the spacetime metric tensor. There is no straightforward defini-
tion of local energy density of the gravitational field in General Rel-
ativity, [14, see p. 84, p. 286] and [12, 15, 16]. This arises because the
spacetime metric tensor includes both the background spacetime met-
ric and the local dynamical effects of the gravitational field. No natural
way of decomposing the spacetime metric tensor into its background
and dynamical parts is known.

In this section, we propose a natural decomposition of the spacetime
metric tensor into a background and a dynamical part. This is derived
from first principles by introducing a test mass in the spacetime contin-
uum described by the background metric, and calculating the effect of
this test mass on the metric.

Consider the diagram of Figure 1. Points A and B of the spacetime
continuum, with coordinates xµ and xµ+dxµ respectively, are separated
by the infinitesimal line element

ds2 = gµν dx
µdxν (1)
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where gµν is the metric tensor describing the background state of the
spacetime continuum.

We now introduce a test mass in the spacetime continuum. This
results in the displacement of point A to Ã, where the displacement is
written as uµ. Similarly, the displacement of point B to B̃ is written
as uµ + duµ. The infinitesimal line element between points Ã and B̃ is
given by ds̃2.

By reference to Figure 1, the infinitesimal line element ds̃2 can be
expressed in terms of the background metric tensor as

ds̃2 = gµν(dx
µ + duµ)(dxν + duν) . (2)

Multiplying out the terms in parentheses, we get

ds̃2 = gµν(dx
µdxν + dxµduν + duµdxν + duµduν) . (3)

Expressing the differentials du as a function of x, this equation becomes

ds̃2 = gµν(dx
µdxν + dxµ uν ;α dx

α + uµ;α dx
αdxν +

+ uµ;α dx
α uν ;β dx

β) , (4)

where the semicolon (;) denotes covariant differentiation. Rearranging
the dummy indices, this expression can be written as

ds̃2 = (gµν + gµα u
α
;ν + gαν u

α
;µ + gαβ u

α
;µu

β
;ν) dx

µdxν (5)

and lowering indices, the equation becomes

ds̃2 = (gµν + uµ;ν + uν;µ + uα;µuα;ν) dx
µdxν . (6)

The expression uµ;ν + uν;µ + uα;µuα;ν is equivalent to the definition
of the strain tensor εµν of Continuum Mechanics. The strain εµν is
expressed in terms of the displacements uµ of a continuum through the
kinematic relation, [17, see p. 149] and [18, see pp. 23–28]:

εµν =
1

2
(uµ;ν + uν;µ + uα;µuα

;ν) . (7)

Substituting for εµν from (7) into (6), we get

ds̃2 = (gµν + 2 εµν) dx
µdxν . (8)

Setting [18, see p. 24]
g̃µν = gµν + 2 εµν (9)
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Fig. 1: Effect of a test mass on the background metric tensor.

����������

A : xµ

B : xµ + dxµ

ds2

�
�
�
�
�
�
�
�
�
�
�
�
��
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then (8) becomes
ds̃2 = g̃µν dx

µdxν , (10)

where g̃µν is the metric tensor describing the spacetime continuum with
the test mass.

Given that gµν is the background metric tensor describing the back-
ground state of the continuum, and g̃µν is the spacetime metric tensor
describing the final state of the continuum with the test mass, then 2 εµν
must represent the dynamical part of the spacetime metric tensor due
to the test mass:

gdynµν = 2 εµν . (11)

We are thus led to the conclusion that the presence of mass results
in strains in the spacetime continuum. Those strains correspond to
the dynamical part of the spacetime metric tensor. Hence the applied
stresses from mass (i.e. the energy-momentum stress tensor) result in
strains in the spacetime continuum, that is strained spacetime.

§2.2. Model of the Elastodynamics of the Spacetime Contin-
uum. The spacetime continuum (STC ) is modelled as a four-dimen-
sional differentiable manifold endowed with a metric gµν . It is a con-
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tinuum that can undergo deformations and support the propagation of
such deformations. A continuum that is deformed is strained.

An infinitesimal element of the unstrained continuum is character-
ized by a four-vector xµ, where µ = 0, 1, 2, 3. The time coordinate is
x0 ≡ ct.

A deformation of the spacetime continuum corresponds to a state
of the STC in which its infinitesimal elements are displaced from their
unstrained position. Under deformation, the infinitesimal element xµ is
displaced to a new position xµ + uµ, where uµ is the displacement of
the infinitesimal element from its unstrained position xµ.

The spacetime continuum is approximated by a deformable linear
elastic medium that obeys Hooke’s law. For a general anisotropic con-
tinuum in four dimensions [18, see pp. 50–53],

Eµναβεαβ = T µν , (12)

where εαβ is the strain tensor, T µν is the energy-momentum stress ten-
sor, and Eµναβ is the elastic moduli tensor.

The spacetime continuum is further assumed to be isotropic and ho-
mogeneous. This assumption is in agreement with the conservation laws
of energy-momentum and angular momentum as expressed by Noether’s
theorem [21, see pp. 23–30]. For an isotropic medium, the elastic moduli
tensor simplifies to [18]:

Eµναβ = λ0(g
µνgαβ) + µ0(g

µαgνβ + gµβgνα) , (13)

where λ0 and µ0 are the Lamé elastic constants of the spacetime con-
tinuum. µ0 is the shear modulus (the resistance of the continuum to
distortions) and λ0 is expressed in terms of κ0, the bulk modulus (the
resistance of the continuum to dilatations) according to

λ0 = κ0 −
1

2
µ0 (14)

in a four-dimensional continuum. A dilatation corresponds to a change
of volume of the spacetime continuum without a change of shape while a
distortion corresponds to a change of shape of the spacetime continuum
without a change in volume.

§2.3. Stress-strain relation of the spacetime continuum. By
substituting (13) into (12), we obtain the stress-strain relation for an
isotropic and homogeneous spacetime continuum

2µ0ε
µν + λ0 g

µνε = T µν, (15)
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where
ε = εαα (16)

is the trace of the strain tensor obtained by contraction. The volume
dilatation ε is defined as the change in volume per original volume [17,
see pp. 149–152] and is an invariant of the strain tensor.

It is interesting to note that the structure of (15) is similar to that
of the field equations of General Relativity, viz.

Rµν − 1

2
gµνR = −κ T µν, (17)

where κ = 8πG/c4 and G is the gravitational constant. This strength-
ens our conjecture that the geometry of the spacetime continuum can
be seen to be a representation of the deformation of the spacetime con-
tinuum resulting from the strains generated by the energy-momentum
stress tensor.

§3. Rest-mass energy relation. The introduction of strains in the
spacetime continuum as a result of the energy-momentum stress tensor
allows us to use by analogy results from Continuum Mechanics, in par-
ticular the stress-strain relation, to provide a better understanding of
strained spacetime. As derived in (15), the stress-strain relation for an
isotropic and homogeneous spacetime continuum can be written as:

2µ0 ε
µν + λ0 g

µνε = T µν .

The contraction of (15) yields the relation

2(µ0 + 2λ0)ε = Tα
α ≡ T. (18)

The time-time component T 00 of the energy-momentum stress tensor
represents the total energy density given by [19, see pp. 37–41]

T 00(xk) =

∫
d3pEp f(x

k,p) , (19)

where Ep =
√
ρ2c4 + p2c2, ρ is the rest-mass energy density, c is the

speed of light, p is the momentum 3-vector and f(xk,p) is the distri-
bution function representing the number of particles in a small phase
space volume d3xd3p. The space-space components T ij of the energy-
momentum stress tensor represent the stresses within the medium
given by

T ij(xk) = c2
∫
d3p

pipj

Ep
f(xk,p). (20)
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They are the components of the net force acting across a unit area of a
surface, across the xi planes in the case where i = j. In the simple case
of a particle, they are given by [20, see p. 117]

T ii = ρ vivi, (21)

where vi are the spatial components of velocity. If the particles are sub-
ject to forces, these stresses must be included in the energy-momentum
stress tensor.

The energy-momentum stress tensor thus includes the energy den-
sity, momentum density and stresses from all matter and all fields, such
as for example the electromagnetic field.

Explicitly separating the time-time and the space-space components,
the trace of the energy-momentum stress tensor is written as

Tα
α = T 0

0 + T i
i . (22)

Substituting from (19) and (20), using the metric ηµν of signature
(+−−−), we obtain:

Tα
α(x

k) =

∫
d3p

(
Ep − p2c2

Ep

)
f(xk,p) (23)

which simplifies to

Tα
α(x

k) = ρ2c4
∫
d3p

f(xk,p)

Ep
. (24)

Using the relation [19, see p. 37]

1

Ehar(xk)
=

∫
d3p

f(xk,p)

Ep
(25)

in equation (24), we obtain the relation

Tα
α(x

k) =
ρ2c4

Ehar(xk)
, (26)

where Ehar(x
k) is the Lorentz invariant harmonic mean of the energy

of the particles at xk.
In the harmonic mean of the energy of the particles Ehar, the mo-

mentum contribution p will tend to average out and be dominated by
the mass term ρc2, so that we can write

Ehar(x
k) ≃ ρc2. (27)
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Substituting for Ehar in (26), we obtain the relation

Tα
α(x

k) ≃ ρc2. (28)

The total rest-mass energy density of the system is obtained by inte-
grating over all space:

Tα
α =

∫
d3x Tα

α(x
k) . (29)

The expression for the trace derived from (22) depends on the com-
position of the sources of the gravitational field. Considering the energy-
momentum stress tensor of the electromagnetic field, we can show that
Tα

α = 0 as expected for massless photons, while

T 00 =
ǫem
2

(
E2 + c2B2

)

is the total energy density, where ǫem is the electromagnetic permittivity
of free space, and E and B have their usual significance (see Page 250
for details).

Hence Tα
α corresponds to the invariant rest-mass energy density

and we write
Tα

α = T = ρc2, (30)

where ρ is the rest-mass energy density. Using (30) into (18), the relation
between the invariant volume dilatation ε and the invariant rest-mass
energy density becomes

2 (µ0 + 2λ0) ε = ρc2 (31)

or, in terms of the bulk modulus κ0,

4κ0 ε = ρc2. (32)

This equation demonstrates that rest-mass energy density arises
from the volume dilatation of the spacetime continuum. The rest-mass
energy is equivalent to the energy required to dilate the volume of the
spacetime continuum, and is a measure of the energy stored in the
spacetime continuum as volume dilatation. κ0 represents the resistance
of the spacetime continuum to dilatation. The volume dilatation is an
invariant, as is the rest-mass energy density.

§4. Decomposition of tensor fields in strained spacetime. As
opposed to vector fields which can be decomposed into longitudinal
(irrotational) and transverse (solenoidal) components using the Helm-
holtz representation theorem [17, see pp. 260–261], the decomposition
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of spacetime tensor fields can be done in many ways (see for example
[9–11,13]).

The application of Continuum Mechanics to a strained spacetime
continuum offers a natural decomposition of tensor fields, in terms of
dilatations and distortions [18, see pp. 58–60]. A dilatation corresponds
to a change of volume of the spacetime continuum without a change of
shape while a distortion corresponds to a change of shape of the space-
time continuum without a change in volume. Dilatations correspond
to longitudinal displacements and distortions correspond to transverse
displacements [17, see p. 260].

The strain tensor εµν can thus be decomposed into a strain deviation
tensor eµν (the distortion) and a scalar es (the dilatation) according
to [18, see pp. 58–60]:

εµν = eµν + es g
µν , (33)

where

eµν = εµν − es δ
µ
ν , (34)

es =
1

4
εαα =

1

4
ε. (35)

Similarly, the energy-momentum stress tensor T µν is decomposed
into a stress deviation tensor tµν and a scalar ts according to

T µν = tµν + ts g
µν , (36)

where similarly

tµν = T µ
ν − ts δ

µ
ν , (37)

ts =
1

4
Tα

α . (38)

Using (33) to (38) into the strain-stress relation of (15) and mak-
ing use of (18) and (14), we obtain separated dilatation and distortion
relations respectively:

dilatation : ts = 2 (µ0 + 2λ0) es = 4κ0 es = κ0 ε

distortion : tµν = 2µ0 e
µν .

(39)

The distortion-dilatation decomposition is evident in the dependence of
the dilatation relation on the bulk modulus κ0 and of the distortion
relation on the shear modulus µ0. The dilatation relation of (39) cor-
responds to rest-mass energy, while the distortion relation is traceless
and thus massless, and corresponds to shear transverse waves.
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This decomposition of spacetime continuum deformations into a
massive dilatation and a massless transverse wave distortion is some-
what reminiscent of wave-particle duality. This could explain why
dilatation-measuring apparatus measure the massive “particle” proper-
ties of the deformation, while distortion-measuring apparatus measure
the massless transverse “wave” properties of the deformation.

§5. Kinematic relations. The strain εµν can be expressed in terms
of the displacement uµ through the kinematic relation [17, see pp. 149–
152]:

εµν =
1

2
(uµ;ν + uν;µ + uα;µuα

;ν) (40)

where the semicolon (;) denotes covariant differentiation. For small
displacements, this expression can be linearized to give the symmetric
tensor

εµν =
1

2
(uµ;ν + uν;µ) = u(µ;ν). (41)

We use the small displacement approximation in this analysis.
An antisymmetric tensor ωµν can also be defined from the displace-

ment uµ. This tensor is called the rotation tensor and is defined as [17]:

ωµν =
1

2
(uµ;ν − uν;µ) = u[µ;ν]. (42)

Where needed, displacements in expressions derived from (41) will be
written as u‖ while displacements in expressions derived from (42) will
be written as u⊥. Using different symbolic subscripts for these displace-
ments provides a reminder that symmetric displacements are along the
direction of motion (longitudinal), while antisymmetric displacements
are perpendicular to the direction of motion (transverse).

In general, we have [17]

uµ;ν = εµν + ωµν (43)

where the tensor uµ;ν is a combination of symmetric and antisymmetric
tensors. Lowering index ν and contracting, we get the volume dilatation
of the spacetime continuum

uµ;µ = εµµ = u‖
µ
;µ = ε (44)

where the relation

ωµ
µ = u⊥

µ
;µ = 0 (45)

has been used.
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§6. Dynamic equation

§6.1. Equilibrium condition. Under equilibrium conditions, the
dynamics of the spacetime continuum is described by the equation [18,
see pp. 88–89],

T µν
;µ = −Xν, (46)

where Xν is the volume (or body) force. As Wald [14, see p. 286] points
out, in General Relativity the local energy density of matter as measured
by a given observer is well-defined, and the relation

T µν
;µ = 0 (47)

can be taken as expressing local conservation of the energy-momentum
of matter. However, it does not in general lead to a global conservation
law. The value Xν = 0 is thus taken to represent the macroscopic local
case, while (46) provides a more general expression.

At the microscopic level, energy is conserved within the limits of the
Heisenberg Uncertainty Principle. The volume force may thus be very
small, but not exactly zero. It again makes sense to retain the volume
force in the equation, and use (46) in the general case, while (47) can
be used at the macroscopic local level, obtained by setting the volume
force Xν equal to zero.

§6.2. Displacement wave equation. Substituting for T µν from
(15), (46) becomes

2µ0 ε
µν

;µ + λ0 g
µνε;µ = −Xν (48)

and, using (41),

µ0 (u
µ;ν

µ + uν;µµ) + λ0 ε
;ν = −Xν. (49)

Interchanging the order of differentiation in the first term and using
(44) to express ε in terms of u, this equation simplifies to

µ0u
ν;µ

µ + (µ0 + λ0)u
µ
;µ

ν = −Xν, (50)

which can also be written as

µ0∇2uν + (µ0 + λ0)ε
;ν = −Xν. (51)

This is the displacement wave equation.
Setting Xν equal to zero, we obtain the macroscopic displacement

wave equation

∇2uν = −µ0 + λ0
µ0

ε;ν. (52)
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§6.3. Continuity equation. Taking the divergence of (43), we ob-
tain

uµ;νµ = εµν ;µ + ωµν
;µ . (53)

Interchanging the order of partial differentiation in the first term, and
using (44) to express u in terms of ε, this equation simplifies to

εµν ;µ + ωµν
;µ = ε;ν. (54)

Hence the divergence of the strain and rotation tensors equals the gradi-
ent of the massive volume dilatation, which acts as a source term. This
is the continuity equation for deformations of the spacetime continuum.

§7. Wave equations

§7.1. Dilatational (longitudinal) wave equation. Taking the di-
vergence of (50) and interchanging the order of partial differentiation in
the first term, we obtain

(2µ0 + λ0)u
µ
;µ

ν
ν = −Xν

;ν . (55)

Using (44) to express u in terms of ε, this equation simplifies to

(2µ0 + λ0)ε
;ν

ν = −Xν
;ν (56)

or
(2µ0 + λ0)∇2ε = −Xν

;ν . (57)

Setting Xν equal to zero, we obtain the macroscopic longitudinal
wave equation

(2µ0 + λ0)∇2ε = 0 . (58)

The volume dilatation ε satisfies a wave equation known as the dilata-
tional wave equation [17, see p. 260]. The solutions of the homogeneous
equation are dilatational waves which are longitudinal waves, propagat-
ing along the direction of motion. Dilatations thus propagate in the
spacetime continuum as longitudinal waves.

§7.2. Rotational (transverse) wave equation. Differentiating
(50) with respect to xα, we obtain

µ0u
ν;µ

µ
α + (µ0 + λ0)u

µ
;µ

να = −Xν;α. (59)

Interchanging the dummy indices ν and α, and subtracting the resulting
equation from (59), we obtain the relation

µ0 (u
ν;µ

µ
α − uα;µµ

ν) = −(Xν;α −Xα;ν) . (60)
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Interchanging the order of partial differentiations and using the defini-
tion of the rotation tensor ωνα of (42), the following wave equation is
obtained:

µ0∇2ωµν = −X [µ;ν] (61)

where X [µ;ν] is the antisymmetrical component of the gradient of the
volume force defined as

X [µ;ν] =
1

2
(Xµ;ν −Xν;µ) . (62)

Setting Xν equal to zero, we obtain the macroscopic transverse wave
equation

µ0∇2ωµν = 0 . (63)

The rotation tensor ωµν satisfies a wave equation known as the rota-
tional wave equation [17, see p. 260]. The solutions of the homogeneous
equation are rotational waves which are transverse waves, propagating
perpendicular to the direction of motion. Massless waves thus propagate
in the spacetime continuum as transverse waves.

§7.3. Strain (symmetric) wave equation. A corresponding sy-
mmetric wave equation can also be derived for the strain εµν . Starting
from (59), interchanging the dummy indices ν and α, adding the result-
ing equation to (59), and interchanging the order of partial differentia-
tion, the following wave equation is obtained:

µ0∇2εµν + (µ0 + λ0)ε
;µν = −X(µ;ν) (64)

whereX(µ;ν) is the symmetrical component of the gradient of the volume
force defined as

X(µ;ν) =
1

2
(Xµ;ν +Xν;µ) . (65)

SettingXν equal to zero, we obtain the macroscopic symmetric wave
equation

∇2εµν = −µ0 + λ0
µ0

ε;µν . (66)

This strain wave equation is similar to the displacement wave equa-
tion (52).

§8. Strain energy density of the spacetime continuum. The
strain energy density of the spacetime continuum is a scalar given by [18,
see p. 51]

E =
1

2
Tαβεαβ , (67)



242 The Abraham Zelmanov Journal — Vol. 5, 2012

where εαβ is the strain tensor and Tαβ is the energy-momentum stress
tensor. Introducing the strain and stress deviators from (33) and (36),
this equation becomes

E =
1

2

(
tαβ + ts g

αβ
)
(eαβ + esgαβ) . (68)

Multiplying and using relations eαα = 0 and tαα = 0 from the definition
of the strain and stress deviators, we obtain

E =
1

2

(
4ts es + tαβeαβ

)
. (69)

Using (39) to express the stresses in terms of the strains, this expression
becomes

E =
1

2
κ0 ε

2 + µ0 e
αβeαβ (70)

where the Lamé elastic constant of the spacetime continuum µ0 is the
shear modulus (the resistance of the continuum to distortions) and κ0
is the bulk modulus (the resistance of the continuum to dilatations).
Alternatively, again using (39) to express the strains in terms of the
stresses, this expression can be written as

E =
1

2κ0
t2s +

1

4µ0
tαβtαβ . (71)

§8.1 Physical interpretation of the strain energy density. The
strain energy density is separated into two terms: the first one expresses
the dilatation energy density (the “mass” longitudinal term) while the
second one expresses the distortion energy density (the “massless” trans-
verse term):

E = E‖ + E⊥ , (72)

where

E‖ =
1

2
κ0 ε

2 ≡ 1

2κ0
t2 (73)

and

E⊥ = µ0 e
αβeαβ ≡ 1

4µ0
tαβtαβ . (74)

Using (32) into (73), we obtain

E‖ =
1

32κ0

(
ρc2
)2
. (75)

The rest-mass energy density divided by the bulk modulus κ0, and the
transverse energy density divided by the shear modulus µ0, have dimen-
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sions of energy density as expected.
Multiplying (71) by 32κ0 and using (75), we obtain

32 κ0 E = ρ2c4 + 8
κ0
µ0

tαβtαβ . (76)

Noting that tαβtαβ is quadratic in structure, we see that this equation
is similar to the energy relation of Special Relativity [22, see p. 51] for
energy density

Ê2 = ρ2c4 + p̂ 2c2, (77)

where Ê is the total energy density and p̂ the momentum density.
The quadratic structure of the energy relation of Special Relativity

is thus found to be present in the Elastodynamics of the Spacetime Con-
tinuum. Equations (76) and (77) also imply that the kinetic energy pc
is carried by the distortion part of the deformation, while the dilatation
part carries only the rest mass energy.

This observation is in agreement with photons which are massless
(E‖ = 0), as will be shown on Page 250, but still carry kinetic energy in

the transverse electromagnetic wave distortions (E⊥ = 1
4µ0

tαβtαβ).

§9. Theory of Electromagnetism from STCED

§9.1. Electromagnetic field strength. In the Elastodynamics of
the Spacetime Continuum, the antisymmetric rotation tensor ωµν is
given by (42), viz.

ωµν =
1

2
(uµ;ν − uν;µ) (78)

where uµ is the displacement of an infinitesimal element of the spacetime
continuum from its unstrained position xµ. This tensor has the same
structure as the electromagnetic field tensor Fµν [33, see p. 550]:

Fµν = ∂µAν − ∂νAµ (79)

where Aµ is the electromagnetic potential four-vector (φ,A), φ is the
scalar potential and A the vector potential.

Identifying the rotation tensor ωµν with the electromagnetic field-
strength tensor according to

Fµν = ϕ0ω
µν (80)

leads to the relation

Aµ = −1

2
ϕ0u

µ
⊥ , (81)

where the symbolic subscript⊥ of the displacement uµ indicates that the
relation holds for a transverse displacement (orthogonal to the direction
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of motion). The constant of proportionality ϕ0 will be referred to as
the “STC electromagnetic shearing potential constant”.

Due to the difference in the definition of ωµν and Fµν with re-
spect to their indices, a negative sign is introduced, and is attributed to
(81). This relation provides a physical explanation of the electromag-
netic potential: it arises from transverse (shearing) displacements of the
spacetime continuum, in contrast to mass which arises from longitudi-
nal (dilatational) displacements of the spacetime continuum. Sheared
spacetime is manifested as electromagnetic potentials and fields.

§9.2. Maxwell’s equations and the current density four-vector.
Taking the divergence of the rotation tensor of (78), gives

ωµν
;µ =

1

2
(uµ;νµ − uν;µµ) . (82)

Recalling (50), viz.

µ0u
ν;µ

µ + (µ0 + λ0)u
µ
;µ

ν = −Xν,

where Xν is the volume force and λ0 and µ0 are the Lamé elastic con-
stants of the spacetime continuum, substituting for uν;µµ from (50) into
(82), interchanging the order of partial differentiation in uµ;νµ in (82),
and using the relation uµ;µ = εµµ = ε from (44), we obtain

ωµν
;µ =

2µ0 + λ0
2µ0

ε;ν +
1

2µ0
Xν. (83)

As seen previously on Page 239, in the macroscopic local case, the vol-
ume force Xν is set equal to zero to obtain the macroscopic relation

ωµν
;µ =

2µ0 + λ0
2µ0

ε;ν . (84)

Using (80) and comparing with the covariant form of Maxwell’s equa-
tions [34, see pp. 42–43]

Fµν
;µ = µem j

ν , (85)

where jν is the current density four-vector (c̺, j), ̺ is the charge density
scalar, and j is the current density vector, we obtain the relation

jν =
ϕ0

µem

2µ0 + λ0
2µ0

ε;ν. (86)

This relation provides a physical explanation of the current density
four-vector: it arises from the 4-gradient of the volume dilatation of the
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spacetime continuum. A corollary of this relation is that massless (trans-
verse) waves cannot carry an electric charge or produce a current.

Substituting for jν from (86) in the relation [35, see p. 94]

jνjν = ̺2c2, (87)

we obtain the expression for the charge density

̺ =
1

2

ϕ0

µemc

2µ0 + λ0
2µ0

√
ε;νε;ν (88)

or, using the relation c = 1/
√
ǫemµem,

̺ =
1

2
ϕ0 ǫem c

2µ0 + λ0
2µ0

√
ε;νε;ν . (89)

Up to now, our identification of the rotation tensor ωµν of the Elasto-
dynamics of the Spacetime Continuum with the electromagnetic field-
strength tensor Fµν has generated consistent results, with no contra-
dictions.

§9.3. The Lorentz condition. The Lorentz condition can be de-
rived directly from the theory. Taking the divergence of (81), we obtain

Aµ
;µ = −1

2
ϕ0u⊥

µ
;µ . (90)

From (45), (90) simplifies to

Aµ
;µ = 0 . (91)

The Lorentz condition is thus obtained directly from the theory. The
reason for the value of zero is that transverse displacements are massless
because such displacements arise from a change of shape (distortion) of
the spacetime continuum, not a change of volume (dilatation).

§9.4. Four-vector potential. Substituting (81) into (82) and rear-
ranging terms, we obtain the equation

∇2Aν −Aµ;ν
µ = ϕ0ω

µν
;µ (92)

and, using (80) and (85), this equation becomes

∇2Aν −Aµ;ν
µ = µem j

ν . (93)

Interchanging the order of partial differentiation in the term Aµ;ν
µ and

using the Lorentz condition of (91), we obtain the well-known wave
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equation for the four-vector potential [34, see pp. 42–43]

∇2Aν = µem j
ν . (94)

The results we obtain are thus consistent with the macroscopic theory
of Electromagnetism, with no contradictions.

§10. Electromagnetism and the volume force Xν . We now in-
vestigate the impact of the volume force Xν on the equations of Electro-
magnetism. Recalling (83), Maxwell’s equation in terms of the rotation
tensor is given by

ωµν
;µ =

2µ0 + λ0
2µ0

ε;ν +
1

2µ0
Xν. (95)

Substituting for ωµν from (80), this equation becomes

Fµν
;µ = ϕ0

2µ0 + λ0
2µ0

ε;ν +
ϕ0

2µ0
Xν. (96)

The additional Xν term can be allocated in one of two ways:

1) either jν remains unchanged as given by (86) and the expression
for Fµν

;µ has an additional term as developed in the first section
below,

2) or Fµν
;µ remains unchanged as given by (85) and the expression

for jν has an additional term as developed in the second section
below.

Option 2 is shown in the following derivation to be the logically consis-
tent approach.

§10.1. jν unchanged (contradiction). Using (86) (jν unchanged)
into (96), Maxwell’s equation becomes

Fµν
;µ = µem j

ν +
ϕ0

2µ0
Xν . (97)

Using (95) into (92) and making use of the Lorentz condition, the wave
equation for the four-vector potential becomes

∇2Aν − ϕ0

2µ0
Xν = µem j

ν . (98)

In this case, the equations for Fµν
;µ and Aν both contain an additional

term proportional to Xν.
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We show that this option is not logically consistent as follows. Using
(86) into the continuity condition for the current density [34]

∂νj
ν = 0 (99)

yields the expression
∇2ε = 0 . (100)

This equation is valid in the macroscopic case where Xν = 0, but dis-
agrees with the general case (non-zero Xν) given by (57), viz.

(2µ0 + λ0)∇2ε = −Xν
;ν .

This analysis leads to a contradiction and consequently is not valid.

§10.2. Fµν
;µ unchanged (logically consistent). Proper treat-

ment of the general case requires that the current density four-vector
be proportional to the RHS of (96) as follows (Fµν

;µ unchanged):

µem j
ν = ϕ0

2µ0 + λ0
2µ0

ε;ν +
ϕ0

2µ0
Xν . (101)

This yields the following general form of the current density four-vector:

jν =
1

2

ϕ0

µem µ0

[
(2µ0 + λ0)ε

;ν +Xν
]
. (102)

Using this expression in the continuity condition for the current density
given by (99) yields (57) as required.

Using (102) into (96) yields the same covariant form of the Maxwell
equations as in the macroscopic case:

Fµν
;µ = µem j

ν (103)

and the same four-vector potential equation

∇2Aν = µem j
ν (104)

in the Lorentz gauge.

§10.3. Homogeneous Maxwell equation. The validity of this an-
alysis can be further demonstrated from the homogeneous Maxwell
equation [34]

∂αF βγ + ∂βF γα + ∂γFαβ = 0 . (105)

Taking the divergence of this equation over α,

∂α∂
αF βγ + ∂α∂

βF γα + ∂α∂
γFαβ = 0 . (106)
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Interchanging the order of differentiation in the last two terms and mak-
ing use of (103) and the antisymmetry of Fµν , we obtain

∇2F βγ + µem (jβ;γ − jγ;β) = 0 . (107)

Substituting for jν from (102),

∇2F βγ = − ϕ0

2µ0

[
(2µ0 + λ0)(ε

;βγ − ε;γβ) + (Xβ;γ −Xγ;β)
]
. (108)

Equation (64), viz.

µ0∇2εµν + (µ0 + λ0)ε
;µν = −X(µ;ν)

shows that ε;µν is a symmetrical tensor. Consequently the difference
term (ε;βγ − ε;γβ) disappears and (108) becomes

∇2F βγ = − ϕ0

2µ0
(Xβ;γ −Xγ;β) . (109)

Expressing Fµν in terms of ωµν using (80), the resulting equation is
identical to (61), viz.

µ0∇2ωµν = −X [µ;ν]

confirming the validity of this analysis of Electromagnetism including
the volume force.

Equations (102) to (104) are the self-consistent electromagnetic equ-
ations derived from the Elastodynamics of the Spacetime Continuum
with the volume force. In conclusion, Maxwell’s equations remain un-
changed. The current density four-vector is the only quantity affected
by the volume force, with the addition of a second term proportional to
the volume force.

It is interesting to note that the current density obtained from the
quantum mechanical Klein-Gordon equation with an electromagnetic
field also consists of the sum of two terms [36, see p. 35].

§11. Electromagnetic strain energy density. The strain energy
density of the electromagnetic energy-momentum stress tensor is calcu-
lated. Starting from the symmetric electromagnetic stress tensor [34, see
pp. 64–66], which has the form

Θµν =
1

µem

(
Fµ

αF
αν +

1

4
gµνFαβFαβ

)
≡ σµν , (110)

with gµν = ηµν of signature (+−−−), and the field-strength tensor
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components [34, see p. 43]

Fµν =




0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0




(111)

and

Fµν =




0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0



, (112)

we obtain σµν ≡ Θµν which is a generalization of the σij Maxwell stress
tensor (here Sj is the Poynting vector, see [34, p. 66], [37, p. 141])

σ00 =
1

2

(
ǫemE

2 +
1

µem
B2

)
=

1

2
ǫem

(
E2 + c2B2

)
,

σ0j = σj0 =
1

cµem
(E ×B)

j
= ǫem c (E ×B)

j
=

1

c
Sj ,

σjk = −
(
ǫemE

jEk+
1

µem
BjBk

)
+

1

2
δjk
(
ǫemE

2+
1

µem
B2

)
=

= −ǫem
[(
EjEk + c2BjBk

)
− 1

2
δjk
(
E2 + c2B2

)]
. (113)

Hence the electromagnetic stress tensor is given by [34, see p. 66]:

σµν =




1
2 ǫem

(
E2+c2B2

)
Sx/c Sy/c Sz/c

Sx/c −σxx −σxy −σxz
Sy/c −σyx −σyy −σyz
Sz/c −σzx −σzy −σzz



, (114)

where σij is the Maxwell stress tensor. Using σαβ = ηαµηβν σ
µν to lower

the indices of σµν , we obtain

σµν =




1
2 ǫem

(
E2+c2B2

)
−Sx/c −Sy/c −Sz/c

−Sx/c −σxx −σxy −σxz
−Sy/c −σyx −σyy −σyz
−Sz/c −σzx −σzy −σzz



. (115)
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§11.1. Calculation of the longitudinal (mass) term. The mass
term is calculated from (73) and (38):

E‖ =
1

2κ0
t2s =

1

32κ0
(σα

α)
2. (116)

The term σα
α is calculated from:

σα
α = ηαβ σ

αβ

= ηα0σ
α0 + ηα1σ

α1 + ηα2σ
α2 + ηα3σ

α3

= η00σ
00 + η11σ

11 + η22σ
22 + η33σ

33





. (117)

Substituting from (114) and the metric ηµν of signature (+ −−−), we
obtain:

σα
α =

1

2
ǫem

(
E2 + c2B2

)
+ σxx + σyy + σzz . (118)

Substituting from (113), this expands to:

σα
α =

1

2
ǫem

(
E2 + c2B2

)
+ ǫem

(
E2

x + c2B2
x

)
+

+ ǫem
(
E2

y + c2B2
y

)
+ ǫem

(
E2

z + c2B2
z

)
−

− 3

2
ǫem

(
E2 + c2B2

)
(119)

and further,

σα
α =

1

2
ǫem

(
E2 + c2B2

)
+ ǫem

(
E2 + c2B2

)
−

− 3

2
ǫem

(
E2 + c2B2

)
. (120)

Hence
σα

α = 0 (121)

and, substituting into (116),

E‖ = 0 (122)

as expected [34, see pp. 64–66]. This derivation thus shows that the
rest-mass energy density of the photon is 0.

§11.2. Calculation of the transverse (massless) term. The tra-
nsverse term is calculated from (74), viz.

E⊥ =
1

4µ0
tαβtαβ . (123)
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Given that ts = 1
4 σ

α
α = 0, then tαβ = σαβ and the terms σαβσαβ are

calculated from the components of the electromagnetic stress tensors of
(114) and (115). Substituting for the diagonal elements and making use
of the symmetry of the Poynting component terms and of the Maxwell
stress tensor terms from (114) and (115), this expands to:

σαβσαβ =
1

4
ǫ2em

(
E2 + c2B2

)2
+

+ ǫ2em

[(
ExEx + c2BxBx

)
− 1

2

(
E2 + c2B2

)]2
+

+ ǫ2em

[(
EyEy + c2ByBy

)
− 1

2

(
E2 + c2B2

)]2
+

+ ǫ2em

[(
EzEz + c2BzBz

)
− 1

2

(
E2 + c2B2

)]2
−

− 2

(
Sx

c

)2
− 2

(
Sy

c

)2
− 2

(
Sz

c

)2
+

+ 2 (σxy)
2 + 2 (σyz)

2 + 2 (σzx)
2. (124)

The E-B terms expand to:

EBterms = ǫ2em

[
1

4

(
E2 + c2B2

)2
+
(
E2

x + c2B2
x

)2 −

−
(
E2

x + c2B2
x

) (
E2 + c2B2

)
+
(
E2

y + c2B2
y

)2 −

−
(
E2

y + c2B2
y

) (
E2 + c2B2

)
+
(
E2

z + c2B2
z

)2 −

−
(
E2

z + c2B2
z

) (
E2 + c2B2

)
+

3

4

(
E2 + c2B2

)2
]
. (125)

Simplifying,

EBterms = ǫ2em

[ (
E2 + c2B2

)2 −
(
E2

x + c2B2
x +

+ E2
y + c2B2

y + E2
z + c2B2

z

) (
E2 + c2B2

)
+

+
(
E2

x + c2B2
x

)2
+
(
E2

y + c2B2
y

)2
+
(
E2

z + c2B2
z

)2 ]
, (126)

which gives

EBterms = ǫ2em

[ (
E2 + c2B2

)2 −
(
E2 + c2B2

)2
+

+
(
E2

x + c2B2
x

)2
+
(
E2

y + c2B2
y

)2
+
(
E2

z + c2B2
z

)2 ]
, (127)
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and finally

EBterms = ǫ2em

[ (
Ex

4 + Ey
4 + Ez

4
)
+ c4

(
Bx

4 +By
4 +Bz

4
)
+

+ 2c2
(
E2

xB
2
x + E2

yB
2
y + E2

zB
2
z

) ]
. (128)

Including the E-B terms in (124), substituting from (113), expanding
the Poynting vector and rearranging, we obtain

σαβσαβ = ǫ2em

[ (
Ex

4 + Ey
4 + Ez

4
)
+ c4

(
Bx

4 +By
4 + Bz

4
)
+

+ 2c2
(
E2

xB
2
x + E2

yB
2
y + E2

zB
2
z

) ]
−

− 2ǫ2emc
2
[
(EyBz − EzBy)

2
+ (−ExBz + EzBx)

2
+

+ (ExBy − EyBx)
2
]
+ 2ǫ2em

[ (
ExEy + c2BxBy

)2
+

+
(
EyEz + c2ByBz

)2
+
(
EzEx + c2BzBx

)2 ]
. (129)

Expanding the quadratic expressions,

σαβσαβ = ǫ2em

[ (
Ex

4 + Ey
4 + Ez

4
)
+ c4

(
Bx

4 +By
4 + Bz

4
)
+

+ 2c2
(
E2

xB
2
x + E2

yB
2
y + E2

zB
2
z

) ]
−

− 2ǫ2emc
2
[
E2

xB
2
y + E2

yB
2
z + E2

zB
2
x +B2

xE
2
y +

+B2
yE

2
z +B2

zE
2
x − 2

(
ExEyBxBy + EyEzByBz +

+ EzExBzBx

)]
+ 2ǫ2em

[(
E2

xE
2
y + E2

yE
2
z + E2

zE
2
x

)
+

+ 2c2
(
ExEyBxBy + EyEzByBz + EzExBzBx

)
+

+ c4
(
B2

xB
2
y +B2

yB
2
z +B2

zB
2
x

) ]
. (130)

Grouping the terms in powers of c together,

1

ǫ2em
σαβσαβ =

[ (
Ex

4 + Ey
4 + Ez

4
)
+ 2
(
E2

xE
2
y +

+ E2
yE

2
z + E2

zE
2
x

)]
+ 2c2

[(
E2

xB
2
x + E2

yB
2
y +

+ E2
zB

2
z

)
−
(
E2

xB
2
y + E2

yB
2
z + E2

zB
2
x+
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+B2
xE

2
y +B2

yE
2
z +B2

zE
2
x

)
+ 4

(
ExEyBxBy +

+ EyEzByBz + EzExBzBx

)]
+ c4

[ (
Bx

4+By
4+Bz

4
)
+

+ 2
(
B2

xB
2
y +B2

yB
2
z +B2

zB
2
x

) ]
. (131)

Simplifying,

1

ǫ2em
σαβσαβ =

(
E2

x + E2
y + E2

z

)2
+

+ 2c2
(
E2

x + E2
y + E2

z

) (
B2

x +B2
y +B2

z

)
−

− 2c2
[
2
(
E2

xB
2
y + E2

yB
2
z + E2

zB
2
x +

+B2
xE

2
y +B2

yE
2
z +B2

zE
2
x

)
− 4

(
ExEyBxBy +

+ EyEzByBz + EzExBzBx

)]
+ c4

(
B2

x +B2
y +B2

z

)2
, (132)

which is further simplified to

1

ǫ2em
σαβσαβ =

(
E4 + 2c2E2B2 + c4B4

)
− 4c2

[
(EyBz −ByEz)

2 +

+ (EzBx −BzEx)
2
+ (ExBy −BxEy)

2
]
. (133)

Making use of the definition of the Poynting vector from (113), we obtain

σαβσαβ = ǫ2em
(
E2 + c2B2

)2 −

− 4ǫ2emc
2
[
(E ×B)

2
x + (E ×B)

2
y + (E ×B)

2
z

]
(134)

and finally

σαβσαβ = ǫ2em
(
E2 + c2B2

)2 − 4

c2
(
S2
x + S2

y + S2
z

)
. (135)

Substituting in (123), the transverse term becomes

E⊥ =
1

4µ0

[
ǫ2em

(
E2 + c2B2

)2 − 4

c2
S2

]
(136)

or

E⊥ =
1

µ0

[
U2
em − 1

c2
S2

]
, (137)

where Uem = 1
2 ǫem(E

2 + c2B2) is the electromagnetic field energy den-
sity.
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§11.3. Electromagnetic field strain energy density and the
photon. S is the electromagnetic energy flux along the direction of
propagation [34, p. 62]. As noted by Feynman [38, pp. 27-1–27-2], local
conservation of the electromagnetic field energy can be written as

−∂Uem

∂t
= ∇ · S , (138)

where the term E · j representing the work done on the matter inside
the volume is 0 in the absence of charges (due to the absence of mass).
By analogy with the current density four-vector jν = (c̺, j), where ̺
is the charge density, and j is the current density vector, which obeys
a similar conservation relation, we define the Poynting four-vector

Sν = (cUem, S) , (139)

where Uem is the electromagnetic field energy density, and S is the
Poynting vector. Furthermore, as per (138), Sν satisfies

∂ν S
ν = 0 . (140)

Using definition (139) in (137), that equation becomes

E⊥ =
1

µ0c2
SνS

ν . (141)

The indefiniteness of the location of the field energy referred to by Feyn-
man [38, see p. 27-1] is thus resolved: the electromagnetic field energy
resides in the distortions (transverse displacements) of the spacetime
continuum.

Hence the invariant electromagnetic strain energy density is given
by

E =
1

µ0c2
SνS

ν (142)

where we have used ρ = 0 as per (121). This confirms that Sν as defined
in (139) is a four-vector.

It is surprising that a longitudinal energy flow term is part of the
transverse strain energy density i.e. S2/µ0c

2 in (137). We note that
this term arises from the time-space components of (114) and (115) and
can be seen to correspond to the transverse displacements along the
time-space planes which are folded along the direction of propagation
in 3-space as the Poynting vector. The electromagnetic field energy
density term U2

em/µ0 and the electromagnetic field energy flux term
S2/µ0c

2 are thus combined into the transverse strain energy density.
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The negative sign arises from the signature (+ − −−) of the metric
tensor ηµν .

This longitudinal electromagnetic energy flux is massless as it is due
to distortion, not dilatation, of the spacetime continuum. However,
because this energy flux is along the direction of propagation (i.e. lon-
gitudinal), it gives rise to the particle aspect of the electromagnetic
field, the photon. As shown in [39, see pp. 174–175] [40, see p. 58], in
the quantum theory of electromagnetic radiation, an intensity operator
derived from the Poynting vector has, as expectation value, photons in
the direction of propagation.

This implies that the (pc)2 term of the energy relation of Special Rel-
ativity needs to be separated into transverse and longitudinal massless
terms as follows:

Ê2 = ρ2c4︸︷︷︸
E‖

+ p̂2‖ c
2 + p̂2⊥c

2

︸ ︷︷ ︸
massless E⊥

(143)

where p̂‖ is the massless longitudinal momentum density. (137) shows

that the electromagnetic field energy density term U2
em/µ0 is reduced

by the electromagnetic field energy flux term S2/µ0c
2 in the transverse

strain energy density, due to photons propagating in the longitudinal
direction. Hence we can write [40, see p. 58]

∫

V

1

µ0c2
S2dV =

∑

k

nkhνk . (144)

where h is Planck’s constant and nk is the number of photons of fre-
quency νk. Thus the kinetic energy is carried by the distortion part
of the deformation, while the dilatation part carries only the rest-mass
energy, which in this case is 0.

As shown in (75), (76) and (77), the constant of proportionality to
transform energy density squared (Ê2) into strain energy density (E) is
1/(32κ0):

E‖ =
1

32κ0

(
ρc2
)2
, (145)

E =
1

32κ0
Ê2, (146)

E⊥ =
1

32κ0

(
p̂2‖ c

2 + p̂2⊥c
2
)
=

1

4µ0
tαβtαβ . (147)

Substituting (137) into (147), we obtain

E⊥ =
1

32κ0

(
p̂2‖ c

2 + p̂2⊥c
2
)
=

1

µ0

(
U2
em − 1

c2
S2

)
(148)
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and

p̂2‖ c
2 + p̂2⊥c

2 =
32κ0
µ0

(
U2
em − 1

c2
S2

)
. (149)

This suggests that
µ0 = 32κ0 , (150)

to obtain the relation

p̂2‖ c
2 + p̂2⊥c

2 = U2
em − 1

c2
S2. (151)

§12. Linear elastic volume force. The volume (or body) force Xν

has been introduced in the equilibrium dynamic equation of the STC

in (46) on Page 239 viz.

T µν
;µ = −Xν. (152)

Comparison with the corresponding general relativistic expression show-
ed that the volume force is equal to zero at the macroscopic local level.
Indeed, as pointed out by Wald [14, see p. 286], in General Relativity
the local energy density of matter as measured by a given observer is
well-defined, and the relation

T µν
;µ = 0 (153)

can be taken as expressing local conservation of the energy-momentum
of matter.

It was also pointed out in that section that at the microscopic level,
energy is known to be conserved only within the limits of the Heisenberg
Uncertainty Principle, suggesting that the volume force may be very
small, but not exactly zero. This is analogous to quantum theory where
Planck’s constant h must be taken into consideration at the microscopic
level while at the macroscopic level, the limit h→ 0 holds.

In this section, we investigate the volume force and its impact on the
equations of the Elastodynamics of the Spacetime Continuum. First we
consider a linear elastic volume force. Based on the results obtained, we
will then consider a variation of that linear elastic volume force based
on the Klein-Gordon quantum mechanical current density.

We investigate a volume force that consists of an elastic linear force
in a direction opposite to the displacements. This is the well-known
elastic “spring” force

Xν = k0u
ν , (154)

where k0 is the postulated elastic force constant of the spacetime con-
tinuum volume force. (154) is positive as the volume force Xν is defined
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positive in the direction opposite to the displacement [18]. Introduction
of this volume force into our previous analysis on Page 239 yields the
following relations.

§12.1. Displacement wave equation. Substituting (154) into (51),
viz.

µ0∇2uν + (µ0 + λ0)ε
;ν = −Xν, (155)

the dynamic equation in terms of displacements becomes

µ0∇2uν + (µ0 + λ0)ε
;ν = −k0uν . (156)

This equation can be rewritten as

∇2uν +
k0
µ0

uν = −µ0 + λ0
µ0

ε;ν. (157)

This displacement equation is similar to a nonhomogeneous Klein-
Gordon equation for a vector field, with a source term.

§12.2. Wave equations. Additional wave equations as shown on
Page 240 can be derived from this volume force.

§12.2.1. Dilatational (longitudinal) wave equation. Substitut-
ing (154) into (57), viz.

(2µ0 + λ0)∇2ε = −Xν
;ν , (158)

the longitudinal (dilatational) wave equation becomes

(2µ0 + λ0)∇2ε = −k0uν ;ν . (159)

Using uµ;µ = ε from (44) and rearranging, this equation can be rewritten
as

∇2ε+
k0

2µ0 + λ0
ε = 0 . (160)

This wave equation applies to the volume dilatation ε. This equation is
similar to the homogeneous Klein-Gordon equation for a scalar field, a
field whose quanta are spinless particles [36].

§12.2.2. Rotational (transverse) wave equation. Substituting
(154) into (61), viz.

µ0∇2ωµν = −X [µ;ν], (161)
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the transverse (rotational) wave equation becomes

µ0∇2ωµν = −k0
2

(uµ;ν − uν;µ) . (162)

Using the definition of ωµν from (42) and rearranging, this equation can
be rewritten as

∇2ωµν +
k0
µ0

ωµν = 0 . (163)

This antisymmetric equation is also similar to an homogeneous Klein-
Gordon equation for an antisymmetrical tensor field.

§12.2.3. Strain (symmetric) wave equation. Substituting (154)
into (64), viz.

µ0∇2εµν + (µ0 + λ0)ε
;µν = −X(µ;ν), (164)

the symmetric (strain) wave equation becomes

µ0∇2εµν + (µ0 + λ0)ε
;µν = −k0

2
(uµ;ν + uν;µ) . (165)

Using the definition of εµν from (41) and rearranging, this equation can
be rewritten as

∇2εµν +
k0
µ0

εµν = −µ0 + λ0
µ0

ε;µν . (166)

This symmetric equation is also similar to a nonhomogeneous Klein-
Gordon equation for a symmetrical tensor field with a source term and
has the same structure as the displacement equation.

§12.3. Electromagnetism. We consider the impact of this volume
force on the equations of electromagnetism derived previously. Substi-
tuting (154) into (95), viz.

ωµν
;µ =

2µ0 + λ0
2µ0

ε;ν +
1

2µ0
Xν , (167)

Maxwell’s equations in terms of the rotation tensor become

ωµν
;µ =

2µ0 + λ0
2µ0

ε;ν +
k0
2µ0

uν . (168)

Separating uν into its longitudinal (irrotational) component uν‖ and its

transverse (solenoidal) component uν⊥ using the Helmholtz theorem in
four dimensions [42] according to

uν = uν‖ + uν⊥ , (169)
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substituting for ωµν from Fµν =ϕ0ω
µν and for uν⊥ from Aµ =− 1

2 ϕ0u
µ
⊥,

this equation becomes

Fµν
;µ = ϕ0

2µ0 + λ0
2µ0

ε;ν +
ϕ0k0
2µ0

uν‖ − k0
µ0

Aν . (170)

Proper treatment of this case requires that the current density four-
vector be proportional to the RHS of (170) as follows:

µem j
ν =

ϕ0

2µ0

[
(2µ0 + λ0)ε

;ν + k0u
ν
‖
]
− k0
µ0

Aν . (171)

This thus yields the following microscopic form of the current density
four-vector:

jν =
ϕ0

2µ0µem

[
(2µ0 + λ0)ε

;ν + k0u
ν
‖
]
− k0
µ0µem

Aν . (172)

We thus find that the second term is proportional to Aν as is the sec-
ond term of the current density obtained from the quantum mechanical
Klein-Gordon equation with an electromagnetic field [36, see p. 35].

§12.4. Discussion of linear elastic volume force results. This
section has been useful in that consideration of a simple linear elastic
volume force leads to equations which are of the Klein-Gordon type. The
wave equations that are obtained for the scalar ε, the four-vector uν , and
the symmetric and antisymmetric tensors εµν and ωµν respectively, are
all equations that are similar to homogeneous or nonhomogeneous Klein-
Gordon equations. The solutions of these equations are well understood
[41, see pp. 414–433].

It should be noted that we cannot simply put

m2c2

~2
=

k0
2µ0 + λ0

(173)

or
m2c2

~2
=
k0
µ0

(174)

from the Klein-Gordon equation, as the expression to use depends on
the wave equation considered. This ambiguity in the equivalency of the
constant m2c2/~2 to STCED constants indicates that the postulated
elastic linear volume force proposed in (154) is not quite correct, even if
it is a step in the right direction. It has provided insight into the impact
of the volume force on this analysis, but the volume force is not quite
the simple linear elastic expression considered in (154).

In the following section, we derive a volume force from the general
current density four-vector expression of (175) below. We find that the
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volume force (154) and consequently the current density four-vector
(172) need to be modified.

§13. Derivation of a quantum mechanical volume force. One
identification of the volume force based on quantum mechanical consid-
erations is possible by comparing (102), viz.

jν =
1

2

ϕ0

µem µ0
[(2µ0 + λ0)ε

;ν +Xν ] , (175)

with the quantum mechanical expression of the current density four-
vector jν obtained from the Klein-Gordon equation for a spin-0 particle.
The Klein-Gordon equation can also describe the interaction of a spin-0
particle with an electromagnetic field. The current density four-vector
jν in that case is written as [36, see p. 35]

jν =
i~e

2m
(ψ∗∂νψ − ψ ∂νψ∗)− e2

m
Aν(ψψ∗) , (176)

where the superscript ∗ denotes complex conjugation.
The first term of (176) includes the following derivative-like expres-

sion:
i (ψ∗∂νψ − ψ ∂νψ∗) . (177)

It is generated by multiplying the Klein-Gordon equation for ψ by ψ∗

and subtracting the complex conjugate [36]. The general form of the
expression can be generated by writing

ψ ∼ exp(iφ) , (178)

which is a qualitative representation of the wave function. One can then
see that with (178), the expression

∂ν (ψψ∗) (179)

has the qualitative structure of (177) although it is not strictly equiva-
lent. However, given that the steps followed to generate (177) are not
repeated in this derivation, strict equivalence is not expected. Replacing
(177) with (179), the first term of (176) becomes

~e

2m
∂ν (ψψ∗) . (180)

We see that this term is similar to the first term of (175) and setting
them to be equal, we obtain

ϕ0

2µem µ0
(2µ0 + λ0)ε

;ν =
~e

2m
∂ν (ψψ∗) . (181)
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Similarly, the second terms of (175) and (176) are also similar and set-
ting them to be equal, we obtain

ϕ0

2µem µ0
Xν = −e

2

m
Aν(ψψ∗) . (182)

The equalities (181) and (182) thus result from the comparison of (175)
and (176).

The first identification that can be derived from (181) is

ε (xµ) = ψψ∗ (183)

to a proportionality constant which has been set to 1, given that the
norm of the wavefunction itself is arbitrarily normalized to 1 as part of
its probabilistic interpretation. Both are dimensionless quantities. ε is
the change in volume per original volume as a function of position xµ,
which is stated explicitly in (183), while ψψ∗ is the probability density
as a function of position, and hence is also a proportion of an overall
quantity normalized to 1. There are thus many similarities between ε
and ψ. This equation leads to the conclusion that the quantum me-
chanical wavefunction describes longitudinal wave propagations in the
STC corresponding to the volume dilatation associated with the particle
property of an object.

Using (81) viz.

Aν = −1

2
ϕ0u

ν
⊥ (184)

and (183) in (182), the quantum mechanical volume force is given by

Xν = µ0µem
e2

m
ε (xµ) uν⊥ . (185)

Using the definition for the dimensionless fine structure constant α=
=µemce

2/2h, (185) becomes

Xν = 2µ0α
h

mc
ε (xµ) uν⊥ (186)

or
Xν = 2µ0αλc ε (x

µ) uν⊥ , (187)

where λc = h/mc is the electron’s Compton wavelength.
Thus the STCED elastic force constant of (154) is given by

k0 = µ0µem
e2

m
= 2µ0α

h

mc
= 2µ0αλc . (188)

The units are [N][m−1] as expected. The volume force is proportional
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to ε (xµ)uν⊥ as opposed to just uν as in (154):

Xν = k0 ε (x
µ) uν⊥. (189)

The volume force Xν is proportional to the Planck constant as sus-
pected previously. This explains why the volume force tends to zero
in the macroscopic case. The volume force is also proportional to the
STC volume dilatation ε (xµ) in addition to the displacements uν⊥. This
makes sense as all deformations, both distortions and dilatations, should
be subject to the STC elastic spring force. This is similar to an elastic
spring law as Xν is defined positive in the direction opposite to the dis-
placement [18]. The volume force also describes the interaction with an
electromagnetic field given that (176) from which it is derived includes
electromagnetic interactions.

Starting from (181), and making use of (183), the STC electromag-
netic shearing potential constant ϕ0 of (81) can be identified:

ϕ0 =
2µ0

2µ0 + λ0
µem

e~

2m
=

2µ0

2µ0 + λ0
µem µB (190)

where the Bohr magneton µB = e~/2m has been used. Using (179) and
(183) in (176), we obtain

jν =
e~

2m
ε;ν − e2

m
Aνε (xµ) (191)

or

jν = µB ε
;ν − e2

m
Aνε (xµ) (192)

with the Bohr magneton.

§13.1. Microscopic dynamics of the STC

§13.1.1. Dynamic equations. Substituting (189) into (155), the
dynamic equation in terms of displacements becomes

µ0∇2uν + (µ0 + λ0)ε
;ν = −k0 ε(xµ)uν⊥ . (193)

This equation can be rewritten as

∇2uν +
k0
µ0

ε (xµ) uν⊥ = −µ0 + λ0
µ0

ε;ν . (194)

We note that ε(xµ) is a scalar function of 4-position only, and plays a role
similar to the potential V (r ) in the Schrödinger equation. Indeed, ε(xµ)
represents the mass energy structure (similar to an energy potential)
impacting the solutions of this equation.
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Separating uν into its longitudinal (irrotational) component uν‖ and

its transverse (solenoidal) component uν⊥ using the Helmholtz theorem
in four dimensions [42] according to

uν = uν‖ + uν⊥ , (195)

we obtain the separated equations

∇2uν‖ = −µ0 + λ0
µ0

ε;ν

∇2uν⊥ +
k0
µ0

ε (xµ) uν⊥ = 0




. (196)

The wave equation for uν‖ describes the propagation of longitudinal dis-
placements, while the wave equation for uν⊥ describes the propagation
of transverse displacements.

§13.1.2. Longitudinal displacements equation. Substituting for
ε;ν from (191) in the first equation of (196), we obtain

∇2uν‖ = −2kL
~

[
e2

m
jν + eAνε (xµ)

]
, (197)

where the dimensionless ratio

kL =
µ0 + λ0
µ0

(198)

has been introduced. Hence the source term on the RHS of this equa-
tion includes the mass resulting from the dilatation displacements, the
current density four-vector, and the vector potential resulting from the
distortion displacements. It provides a full description of the gravita-
tional and electromagnetic interactions at the microscopic level.

§13.1.3. Transverse displacements equation. Substituting for uν⊥
from (81) in the second equation of (196), we obtain

∇2Aν +
k0
µ0

ε (xµ) Aν = 0 . (199)

Substituting for k0 from (188), this equation becomes

∇2Aν + µem
e2

m
ε (xµ) Aν = 0 (200)
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or

∇2Aν + 2α
h

mc
ε (xµ) Aν = 0 (201)

and finally
∇2Aν + 2αλc ε (x

µ) Aν = 0 . (202)

This equation is similar to a Proca equation except that the coefficient of
Aν is not the familiarm2c2/~2. Given that transverse displacements are
massless, the Proca equation coefficient is not expected given its usual
interpretation that it represents the mass of the particle described by
the equation. This is discussed in more details in the next section.

§13.2. Wave equations

§13.2.1. Longitudinal wave equation. Substituting (189) into
(158), the longitudinal (dilatational) wave equation becomes

(2µ0 + λ0)∇2ε = −∇ν

[
k0 ε (x

µ) uν⊥
]
. (203)

Taking the divergence on the RHS, using uν⊥;ν = 0 from (45) and rear-
ranging, this equation can be rewritten as

∇2ε = − k0
2µ0 + λ0

uν⊥ε;ν . (204)

Substituting for uν⊥ from (81), for k0 from (188) and for ε;ν from (191),
we obtain

∇2ε− 4
e2

~2
AνAν ε = 4

m

~2
Aνjν . (205)

Recognizing that
e2AνAν = P νPν = −m2c2, (206)

and substituting in (205), the equation becomes

∇2ε+ 4
m2c2

~2
ε = 4

m

~2
Aνjν . (207)

This is the Klein-Gordon equation except for the factor of 4 multiplying
the ε coefficient and the source term. The term on the RHS of this
equation is an interaction term of the form A · j.

As identified from (183) and confirmed by this equation, the quan-
tum mechanical wavefunction describes longitudinal wave propagations
in the STC corresponding to the volume dilatation associated with the
particle property of an object. The RHS of the equation indicates an
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interaction between the longitudinal current density jν and the trans-
verse vector potential Aν . This is interpreted in Electromagnetism as
energy in the static magnetic induction field to establish the steady cur-
rent distribution [43, see p. 150]. It is also the form of the interaction
term introduced in the vacuum Lagrangian for classical electrodynam-
ics [44, see p. 428].

Although (207) with them2c2/~2 coefficient is how the Klein-Gordon
equation is typically written, (205) is a more physically accurate way of
writing that equation, i.e.

~
2

4
∇2ε− e2AνAν ε = mAνjν , (208)

as the massive nature of the equation resides in its solutions ε (xµ). The
constant m needs to be interpreted in the same way as the constant e.
The constant e in the Klein-Gordon equation is the elementary unit of
electrical charge (notwithstanding the quark fractional charges), not the
electrical charge of the particle represented by the equation. Similarly,
the constant m in the Klein-Gordon equation needs to be interpreted
as the elementary unit of mass (the electron’s mass), not the mass of
the particle represented by the equation. That is obtained from the
solutions ε (xµ) of the equation.

§13.2.2. Transverse wave equation. Substituting (189) into (161),
the transverse (rotational) wave equation becomes

µ0∇2ωµν = −k0
2

[
(εuµ⊥)

;ν − (εuν⊥)
;µ
]
. (209)

Using (42) and rearranging, this equation can be rewritten as

∇2ωµν +
k0
µ0

ε (xµ) ωµν =
1

2

k0
µ0

(ε;µuν⊥ − ε;νuµ⊥) . (210)

Substituting for ωµν using Fµν =ϕ0ω
µν from (80), for uν⊥ from (81),

for k0 from (188) and for ε;ν from (191), we obtain

∇2Fµν + µem
e2

m
ε (xµ) Fµν = µem

e

~
(Aµjν −Aνjµ) . (211)

This equation can also be written as

∇2Fµν + 2αλc ε (x
µ) Fµν = µem

e

~
(Aµjν −Aνjµ) . (212)

This is a new equation of the electromagnetic field strength Fµν . The
term on the RHS of this equation is an interaction term of the formA×j.
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In Electromagnetism, this term is the volume density of the magnetic
torque (magnetic torque density), and is interpreted as the “longitu-
dinal tension” between two successive current elements (Helmholtz’s
longitudinal tension), observed experimentally by Ampère (hairpin ex-
periment) [45].

§13.2.3. Strain wave equation. Substituting (189) into (164), the
strain (symmetric) wave equation becomes

µ0∇2εµν + (µ0 + λ0)ε
;µν = −k0

2

[
(εuµ⊥)

;ν + (εuν⊥)
;µ
]
, (213)

which can be rewritten as

∇2εµν +
µ0 + λ0
µ0

ε;µν =

=
1

2

k0
µ0

[
ε (uµ;ν⊥ + uν;µ⊥ ) + (ε;µuν⊥ + ε;νuµ⊥)

]
. (214)

Substituting for uν⊥ from (81), for k0 from (188) and for ε;ν from (191),
we obtain

∇2εµν + kL ε
;µν = kT

2m

~2
(Aµjν + Aνjµ) +

+ kT ε

[
e

~
(Aµ;ν +Aν;µ) +

2e2

~2
(AµAν +AνAµ)

]
, (215)

where the dimensionless ratio

kT =
2µ0 + λ0

µ0
(216)

has been introduced and ratio kL has been used from (198). The last
term can be summed to 2AµAν . This new equation for the symmetrical
strain tensor field includes on the RHS symmetrical interaction terms
between the current density four-vector and the vector potential result-
ing from the distortion displacements and between the vector potential
and the mass resulting from the dilatation displacements.

§13.3. Simplified wave equations. Inspection of the wave equa-
tions derived previously shows that common factors are associated with
Aν and jν in all the equations. We thus introduce the reduced physical
variables Āν and j̄ν defined according to

Āν = eAν , j̄ν =
m

e
jν , (217)
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and ¯̄Aν and ¯̄jν defined according to

¯̄Aν =
2e

~
Aν , ¯̄jν =

2m

e~
jν . (218)

The various wave equations then simplify to the following.

Longitudinal displacements equation

∇2uν‖ = −2kL
~

(
j̄ν + εĀν

)
(219)

∇2uν‖ = −kL
( ¯̄jν + ε ¯̄Aν

)
(220)

Transverse displacements equation

∇2Āν + 2αλc εĀ
ν = 0 (221)

∇2 ¯̄Aν + 2αλc ε
¯̄Aν = 0 (222)

Longitudinal wave equation

~
2

4
∇2ε− ĀνĀν ε = Āν j̄ν (223)

∇2ε− ¯̄Aν ¯̄Aν ε =
¯̄Aν ¯̄jν (224)

Transverse wave equation

∇2Fµν + 2αλc ε (x
µ) Fµν = µem

e

~m

(
Āµj̄ν − Āν j̄µ

)
(225)

∇2Fµν + 2αλc ε (x
µ) Fµν =

1

2
µem µB

( ¯̄Aµ¯̄jν − ¯̄Aν ¯̄jµ
)

(226)

Strain wave equation

∇2εµν + kL ε
;µν = kT

2

~2

(
Āµj̄ν + Āν j̄µ

)
+

+ kT ε

[
1

~

(
Āµ;ν + Āν;µ

)
+

2

~2

(
ĀµĀν + ĀνĀµ

) ]
(227)

∇2εµν + kL ε
;µν =

1

2
kT
( ¯̄Aµ¯̄jν + ¯̄Aν ¯̄jµ

)
+

+
1

2
kT ε

[( ¯̄Aµ;ν + ¯̄Aν;µ
)
+
( ¯̄Aµ ¯̄Aν + ¯̄Aν ¯̄Aµ

)]
(228)
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§13.4. Microscopic theory of Electromagnetism. We consider
the impact of this volume force on the equations of electromagnetism
derived previously. Substituting (186) into (95), Maxwell’s equations in
terms of the rotation tensor become

ωµν
;µ =

2µ0 + λ0
2µ0

ε;ν + αλc ε (x
µ)uν⊥ . (229)

Substituting for ωµν using Fµν =ϕ0ω
µν from (80) and using (81) for

uν⊥, this equation becomes

Fµν
;µ = ϕ0

2µ0 + λ0
2µ0

ε;ν − 2αλc ε (x
µ)Aν . (230)

Proper treatment of this case requires that the current density four-
vector be proportional to the RHS of (230) as follows:

µemj
ν = ϕ0

2µ0 + λ0
2µ0

ε;ν − 2αλc ε (x
µ)Aν . (231)

As seen previously, the equations of electrodynamics, in the general case,
are identical to the covariant form of Maxwell’s equations and are not
modified by the volume force (see Page 246). This yields the following
microscopic form of the current density four-vector:

jν =
ϕ0

µem

2µ0 + λ0
2µ0

ε;ν − 2αλc
µem

ε (xµ)Aν . (232)

Substituting for ϕ0 from (190) and for α as in (186) into (232), we
obtain

jν =
e~

2m
ε;ν − e2

m
Aνε (xµ) (233)

or

jν = µB ε
;ν − e2

m
Aνε (xµ) (234)

using the Bohr magneton.

§14. Discussion and Conclusion. In this paper, we have presented
the Elastodynamics of the Spacetime Continuum (STCED). This theory
describes the deformations of the spacetime continuum by modeling and
analyzing the displacements of the elements of the STC resulting from
the spacetime continuum strains arising from the energy-momentum
stress tensor, based on the application of continuum mechanical results
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to the spacetime continuum. STCED provides a fundamental descrip-
tion of the microscopic processes underlying the spacetime continuum.
The combination of the spacetime continuum deformations results in
the geometry of the STC.

We have proposed a natural decomposition of the spacetime metric
tensor into a background and a dynamical part based on an analysis
from first principles, of the impact of introducing a test mass in the
spacetime continuum. We have found that the presence of mass results
in strains in the spacetime continuum. Those strains correspond to
the dynamical part of the spacetime metric tensor. The applicability
of the proposed metric to the Einstein field equations remains open to
demonstration.

We have proposed a framework for the analysis of strained spacetime
based on the Elastodynamics of the Spacetime Continuum. In this
model, the emphasis is on the displacements of the spacetime continuum
infinitesimal elements from their unstrained configuration as a result of
the strains applied on the STC by the energy-momentum stress tensor,
rather than on the geometry of the STC due to the energy-momentum
stress tensor.

We postulate that this description based on the deformation of the
continuum is a description complementary to that of General Relativity
which is concerned with modeling the resulting geometry of the space-
time continuum. Interestingly, the structure of the resulting stress-
strain relation is similar to that of the field equations of General Rela-
tivity. This strengthens our conjecture that the geometry of the space-
time continuum can be seen as a representation of the deformation of
the spacetime continuum resulting from the strains generated by the
energy-momentum stress tensor. The equivalency of the deformation
description and of the geometrical description still remains to be demon-
strated. It should be noted that these could be considered to be local
effects in the particular reference frame of the observer.

We have applied the stress-strain relation of Continuum Mechan-
ics to the spacetime continuum to show that rest-mass energy density
arises from the volume dilatation of the spacetime continuum. This is a
significant result as it demonstrates that mass is not independent of the
spacetime continuum, but rather results from how energy-momentum
propagates in the spacetime continuum. Matter does not warp space-
time, but rather matter is warped spacetime. The universe consists of
the spacetime continuum and energy-momentum that propagates in it
by deformation of its (STC ) structure.

We have proposed a natural decomposition of tensor fields in strained
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spacetime, in terms of dilatations and distortions. We have shown that
dilatations correspond to rest-mass energy density, while distortions cor-
respond to massless shear transverse waves. We have noted that this de-
composition of spacetime continuum deformations into a massive dilata-
tion and a massless transverse wave distortion is somewhat reminiscent
of wave-particle duality. This could explain why dilatation-measuring
apparatus measure the massive “particle” properties of the deformation,
while distortion-measuring apparatus measure the massless transverse
“wave” properties of the deformation.

The equilibrium dynamic equation of the spacetime continuum is de-
scribed by T µν

;µ = −Xν . In General Relativity, the relation T µν
;µ = 0

is taken as expressing local conservation of the energy-momentum of
matter. The value Xν = 0 is thus taken to represent the macroscopic
local case, while in the general case, the volume force Xν is retained in
the equation. This dynamic equation leads to a series of wave equations
as derived in this paper: the displacement (uν), dilatational (ε), rota-
tional (ωµν) and strain (εµν) wave equations. The nature of the space-
time continuum volume force and the resulting inhomogeneous wave
equations are areas of further investigation.

Hence energy is seen to propagate in the spacetime continuum as de-
formations of the STC that satisfy wave equations of propagation. De-
formations can be decomposed into dilatations and distortions.
Dilatations involve an invariant change in volume of the spacetime con-
tinuum which is the source of the associated rest-mass energy density
of the deformation. Distortions correspond to a change of shape of the
spacetime continuum without a change in volume and are thus mass-
less. Dilatations correspond to longitudinal displacements and distor-
tions correspond to transverse displacements of the spacetime contin-
uum.

Hence, every excitation of the spacetime continuum can be decom-
posed into a transverse and a longitudinal mode of propagation. We
have noted again that this decomposition into a dilatation with rest-
mass energy density and a massless transverse wave distortion, is some-
what reminiscent of wave-particle duality, with the transverse mode
corresponding to the wave aspects and the longitudinal mode corre-
sponding to the particle aspects.

A continuity equation for deformations of the spacetime continuum
has been derived; we have found that the divergence of the strain and
rotation tensors equals the gradient of the massive volume dilatation,
which acts as a source term.

We have analyzed the strain energy density of the spacetime con-
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tinuum in STCED. We have found that the strain energy density is
separated into two terms: the first one expresses the dilatation energy
density (the “mass” longitudinal term) while the second one expresses
the distortion energy density (the “massless” transverse term). We have
found that the quadratic structure of the energy relation of Special Rel-
ativity is present in the strain energy density of the Elastodynamics
of the Spacetime Continuum. We have also found that the kinetic en-
ergy pc is carried by the distortion part of the deformation, while the
dilatation part carries only the rest mass energy.

We have derived Electromagnetism from the Elastodynamics of the
Spacetime Continuum based on the identification of the theory’s anti-
symmetric rotation tensor ωµν with the electromagnetic field-strength
tensor Fµν .

The theory provides a physical explanation of the electromagnetic
potential: it arises from transverse (shearing) displacements of the spa-
cetime continuum, in contrast to mass which arises from longitudinal
(dilatational) displacements of the spacetime continuum. Hence sheared
spacetime is manifested as electromagnetic potentials and fields.

In addition, the theory provides a physical explanation of the current
density four-vector: it arises from the 4-gradient of the volume dilatation
of the spacetime continuum. A corollary of this relation is that massless
(transverse) waves cannot carry an electric charge or produce a current.

The transverse mode of propagation involves no volume dilatation
and is thus massless. Transverse wave propagation is associated with
the distortion of the spacetime continuum. Electromagnetic waves are
transverse waves propagating in the STC itself, at the speed of light.

The Lorentz condition is obtained directly from the theory. The
reason for the value of zero is that transverse displacements are massless
because such displacements arise from a change of shape (distortion) of
the spacetime continuum, not a change of volume (dilatation).

In addition, we have obtained a generalization of Electromagnetism
for the situation where a volume force is present, in the general non-
macroscopic case. Maxwell’s equations are found to remain unchanged,
but the current density has an additional term proportional to the vol-
ume force Xν.

The Elastodynamics of the Spacetime Continuum thus provides a
unified description of the spacetime deformation processes underlying
general relativistic Gravitation and Electromagnetism, in terms of spa-
cetime continuum displacements resulting from the strains generated by
the energy-momentum stress tensor.

We have calculated the strain energy density of the electromagnetic
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energy-momentum stress tensor. We have found that the dilatation
longitudinal (mass) term of the strain energy density and hence the
rest-mass energy density of the photon is 0. We have found that the
distortion transverse (massless) term of the strain energy density is a
combination of the electromagnetic field energy density term U2

em/µ0

and the electromagnetic field energy flux term S2/µ0c
2, calculated from

the Poynting vector. This longitudinal electromagnetic energy flux is
massless as it is due to distortion, not dilatation, of the spacetime con-
tinuum. However, because this energy flux is along the direction of
propagation (i.e. longitudinal), it gives rise to the particle aspect of the
electromagnetic field, the photon.

We have investigated the volume force and its impact on the equa-
tions of the Elastodynamics of the Spacetime Continuum. We have
found that a linear elastic volume force leads to equations which are of
the Klein-Gordon type. From a variation of that linear elastic volume
force based on the Klein-Gordon quantum mechanical current density,
we have found that the quantum mechanical wavefunction describes
longitudinal wave propagations in the STC corresponding to the vol-
ume dilatation associated with the particle property of an object. We
have derived the wave equations corresponding to the modeled volume
force. The longitudinal wave equation is found to correspond to the
Klein-Gordon equation with a source term corresponding to an inter-
action term of the form A · j, further confirming that the quantum
mechanical wavefunction describes longitudinal wave propagations in
the STC. The transverse wave equation is found to be a new equation
of the electromagnetic field strength Fµν , which includes an interaction
term of the form A×j corresponding to the volume density of the mag-
netic torque (magnetic torque density). The equations obtained reflect
a close integration of gravitational and electromagnetic interactions at
the microscopic level.

§14.1 Future directions. This paper has presented a linear elas-
tic theory of the Elastodynamics of the Spacetime Continuum for the
analysis of the deformations of the spacetime continuum. It provides
a fundamental description of gravitational, electromagnetic and some
quantum phenomena. Progress has been achieved towards the goal set
initially, that the theory should in principle be able to explain the basic
physical theories from which the rest of physical theory can be built,
without the introduction of inputs external to the theory. Physical ex-
planations of the following phenomena have been derived from STCED

in this paper:
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— Decomposition of the metric tensor. A decomposition of the
metric tensor into its background and dynamical parts is obtained.
The dynamical part corresponds to the strains generated in the
spacetime continuum by the energy-momentum stress tensor.

— Wave-particle duality. Every excitation of the spacetime con-
tinuum can be separated into a transverse (distortion) and a lon-
gitudinal (dilatation) mode of propagation. This decomposition
of spacetime continuum deformations into a massive dilatation
(“particle”) and a massless transverse distortion (“wave”) is sim-
ilar to wave-particle duality.

— Nature of matter. The longitudinal mode of propagation in-
volves an invariant change in volume of the spacetime continuum.
Rest-mass energy, and hence matter, arises from this invariant
volume dilatation of the spacetime continuum.

— Maxwell’s equations. Maxwell’s equations are derived from
the theory, including a generalization when a volume forme Xν is
present.

— Nature of Electromagnetism. The theory provides a physical
explanation of the electromagnetic potential, which arises from
transverse (shearing) displacements of the spacetime continuum,
and of the current density four-vector, which is the 4-gradient of
the volume dilatation of the spacetime continuum.

— Lorentz condition. The Lorentz condition is obtained directly
from the theory.

— Electromagnetic radiation. The transverse mode of propaga-
tion involves no volume dilatation and is thus massless. Electro-
magnetic waves are transverse waves propagating in the spacetime
continuum itself.

— Speed of light. Energy propagates through the spacetime contin-
uum as deformations of the continuum. The maximum speed at
which the transverse distortions can propagate through the space-
time continuum is c, the speed of light.

— Quadratic energy relation of Special Relativity. This is
derived from the strain energy density which is separated into
a dilatation energy density term (the “mass” longitudinal term)
and a distortion energy density term (the “massless” transverse
term). The kinetic energy pc is carried by the distortion part of
the deformation, while the dilatation part carries only the rest
mass energy.
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— Nature of photons. The strain energy density of the electro-
magnetic field includes a longitudinal electromagnetic energy flux
which is massless as it is due to distortion, not dilatation, of the
spacetime continuum. However, because this energy flux is along
the direction of propagation (i.e. longitudinal), it gives rise to the
photon, the particle aspect of the electromagnetic field.

— Nature of the wavefunction. The quantum mechanical wave-
function describes longitudinal wave propagations in the space-
time continuum corresponding to the volume dilatation associated
with the particle property of an object.

— Klein-Gordon equation. The longitudinal wave equation de-
rived from a quantum mechanically derived volume force corre-
sponds to the Klein-Gordon equation with a source term corre-
sponding to an interaction term of the form A · j.

— Magnetic torque density equation. The transverse wave equa-
tion is found to be a new equation of the electromagnetic field
strength Fµν , which includes an interaction term of the formA×j

corresponding to the magnetic torque density.

A solid foundation of the STCED theory has been laid, from which
further expansion can be achieved. The basic physical theory from
which the rest of physical theory can be built is not complete. For
example, the basic physical constants such as Planck’s constant h, the
elementary electrical charge e, the elementary mass of the electron m,
should be derivable from the fundamental constants κ0, µ0, ρ0 and
others characterizing the spacetime continuum. They should also be
physically explained by the theory.

This we believe can be achieved by using a more complete theory of
the spacetime continuum and of the Elastodynamics of the Spacetime
Continuum.

In this section, we suggest future directions to extend the theory
of STCED. The following areas of exploration are being suggested as
candidates worthy of further study:

— Exploration of alternative Volume forces derived from other iden-
tifications of related physical results.

— The incorporation of Torsion in the theory, based on Élie Cartan’s
differential forms formulation.

— Extension of the theory based on the evolution of Continuum Me-
chanics in the last one hundred years, including Eshelbian Me-
chanics [46] and the Mechanics of Generalized Continua [47].
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— Extension of the theory to include Defects, such as dislocations
and disinclinations. Given that the spacetime continuum behaves
as a deformable medium, there is no reason not to expect disloca-
tions and other defects to be present in the STC.

A more sophisticated theory of STCED is expected to provide additional
insight into the fundamental nature of the spacetime continuum and of
physical theory.
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18. Flügge W. Tensor Analysis and Continuum Mechanics. Springer-Verlag, New
York, 1972.

19. Padmanabhan T. Gravitation, Foundations and Frontiers. Cambridge Univer-
sity Press, Cambridge, 2010.

20. Eddington A.S. The Mathematical Theory of Relativity. Cambridge University
Press, Cambridge, 1957.

21. Kaku M. Quantum Field Theory; A Modern Introduction. Oxford University
Press, Oxford, 1993.

22. Lawden D.F. Tensor Calculus and Relativity. Methuen & Co, London, 1971.

23. Horie K. Geometric Interpretation of Electromagnetism in a Gravitational The-
ory with Space-Time Torsion. Cornell University arXiv: hep-th/9409018.

24. Sidharth B.G. The Unification of Electromagnetism and Gravitation in the
Context of Quantized Fractal Space Time. Cornell University arXiv: gen-
ph/0007021.

25. Wu N. Unification of Electromagnetic Interactions and Gravitational Interac-
tions. Cornell University arXiv: hep-th/0211155.

26. Rabounski D. A Theory of Gravity Like Electrodynamics. Progress in Physics,
2005, vol. 2, 15–29.

27. Wanas M.I. and Ammar S.A. Space-Time Structure and Electromagnetism.
Cornell University arXiv: gr-qc/0505092.

28. Shahverdiyev S.S. Unification of Electromagnetism and Gravitation in the
Framework of General Geometry. Cornell University arXiv: gen-ph/0507034.

29. Chang Y.-F. Unification of Gravitational and Electromagnetic Fields in Rie-
mannian Geometry. Cornell University arXiv: gen-ph/0901.0201.

30. Borzou A. and Sepangi H.R. Unification of Gravity and Electromagnetism Re-
visited. Cornell University arXiv: gr-qc/0904.1363.

31. Chernitskii A.A. On Unification of Gravitation and Electromagnetism in the
Framework of a General-Relativistic Approach. Cornell University arXiv: gr-
qc/0907.2114.

32. Baylis W.E. Electrodynamics, A Modern Geometric Approach. Birkhäuser,
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