
Lichnérowicz’s Theory of Spinors

in General Relativity:

the Zelmanov Approach

Patrick Marquet∗

Abstract: In this paper, we apply Abraham Zelmanov’s theory of
chronometric invariants to the spinor formalism, based on Lichné-
rowicz’s initial spinor formalism extended to the General Theory of
Relativity. From the classical theory, we make use of the Dirac current
which is shown to be a real four-vector, and by an appropriate choice of
the compatible gamma matrices, this current retains all the properties
of a space-time vector. Its components are uniquely expressed in terms
of spinor components, and we eventually obtain the desired physically
observable spinors in the sense of Zelmanov, next to the scalar, vector,
and tensor quantities.

Contents:

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

§1 The Riemannian spinor field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

§1.1 General Riemannian space-time . . . . . . . . . . . . . . . . . . . . . . . . . 119

§1.2 The gamma matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

§2 The spinor concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

§2.1 The isomorphism p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

§2.2 Spinor definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

§2.3 The charge conjugation and the adjoint operation . . . . . . . 123

§3 The Riemannian Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

§3.1 The spinor connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

§3.2 The Riemannian Dirac operators and subsequent Dirac
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

§3.3 The Dirac current vector density . . . . . . . . . . . . . . . . . . . . . . . . 125

§4 The Dirac-Zelmanov equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

§4.1 The unique physically observable spinor . . . . . . . . . . . . . . . . . 126

§4.2 The Zelmanov spinor connection . . . . . . . . . . . . . . . . . . . . . . . . 128

§4.3 The massive Dirac field interacting with an electromag-
netic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

∗Postal address: 7, rue du 11 nov, 94350 Villiers/Marne, Paris, France. E-mail:
patrick.marquet6@wanadoo.fr. Tel: (33) 1-49-30-33-42.



118 The Abraham Zelmanov Journal — Vol. 5, 2012

Introduction. Preliminary conventions:

— ~ = 1 and c 6= 1;

— Four-dimensional general basis eµ and numbering of the four 4×4
Dirac gamma matrices with Greek indices: µ, ν = 0, 1, 2, 3;

— Three-dimensional general basis eα with Greek indices: α, β=
=1, 2, 3;

— Four-dimensional coordinates with Latin indices: a, b, c, . . . , f =
=0, 1, 2, 3;

— Three-dimensional coordinates with Latin indices: i, j, k, l,m, . . .
. . . = 1, 2, 3;

— Spinor indices with capital Latin indices: A,B = 1, 2, 3, 4.

We first briefly recall the essence of Zelmanov’s theory: the dynamic
fundamental observer can be coupled with his physical referential sys-
tem whose general space-time possesses a gravitational field, generally
subject to rotation and deformation. Physical-mathematical quantities
(scalars, vectors, tensors) as measured in the observer’s accompanying
frame of reference, are called physically observable quantities if and only
if they result uniquely from the chronometric projection of the generally
covariant four-dimensional quantities onto the time line and the spatial
section in such a way that the new semi-three-dimensional quantities
depend everywhere on the monad vector (world-velocity): those are
known as chronometrically invariant quantities.

If the spatial sections are everywhere orthogonal to the time line, the
enveloping space is said to be holonomic. In general, the real space-time
(e.g. of the Metagalaxy) is non-homogeneous and non-isotropic, i.e. it
is non-holonomic.

Besides vectors and tensors, we intend here to derive a law setting
Zelmanov’s physically observable properties for another type of quanti-
ties, namely spinors. To achieve this, we will first follow the Lichnéro-
wicz analysis which formally defines spinors within General Relativity,
and which leads to the well-known Dirac equation for the electron in
a pseudo-Riemannian space-time. We will then infer the Dirac current

from the spinor Lagrangian, which is shown to retain all properties of a
real four-vector.

With a special choice of the gamma matrices compatible with the
regular spinor theory [1], we define the Dirac current as a space-time
vector whose components are exclusively expressed in terms of spinors.

These spinors, as they are physically observed, are thus modified
through the chronometric properties of the general space, i.e. the linear
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velocity of space rotation vi, and the gravitational force Fi, as well as
the gravitational potential w.

Three-dimensional non-holonomity and deformation of space, which
are respectively represented by the antisymmetric and symmetric chro-
nometrically invariant tensors Aik, and Dik, appear in the Christoffel
symbols’ components formulated uniquely in terms of physically ob-
servable quantities [2], which are to be part of the Riemann spinor
connection.

Accordingly, we can construct a Dirac-Zelmanov equation for the
electron interacting with a four-potentialAµ, whose chronometrically in-
variant projections (physically observable components) only apply here
to A0 .

It is essential to note that the inferred Dirac-Zelmanov equation does
also comply with the positron equation, as easily shown below.

§1. The Riemannian spinor field

§1.1. General Riemannian space-time. Let V4 be a C∞-differ-
entiable Riemann four-manifold which admits a structural group,
namely the homogeneous (or full) Lorentz group denoted by L(4).

The metric is locally written on an open neighbourhood of the man-
ifold V4 as

ds2 = gab dx
adxb, (1)

which is equivalent to writing

ds2 = ηµν θ
µθν , (2)

where ηµν is the Minkowski metric tensor : (1,−1,−1,−1).
The θµ are the four Pfaffian forms (see a formal definition of these

in Appendix) which are related to the coordinate bases by

θµ = aµa dx
a, (3)

where the aµa form the tetrad part that carries the curved space-time
properties.

We systematically refer V4 to orthonormal bases, which are the ele-
ments of a fiber space E(V4), whose structural group is the full Lorentz
group L(4).

Let now F be a matrix F∈L(4). The global orientation of the
manifold V4 is a pseudoscalar denoted by o, whose square is 1, and
which is defined, with respect to the system of frames y of E(V4), as
the component oy =±1, such that if y= y′F, we get oy =oy′oF.
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We next define the antisymmetric tensor εa1 ...a0

b1 ...b0
as follows: its com-

ponents are +1 if the upper indices’ series is an even permutation of
the series of lower indices all assumed distinct, and −1 for an odd per-
mutation, and 0 otherwise. The covariant derivative of this tensor is
zero. To simplify the notation, we may just write εa1 ...a0

1 ...0 = εa1 ...a0 ,
ε1 ...0a1 ...a0

= εa1 ...a0
.

If V4 is oriented, we set the orientable volume element tensor η
(whose covariant derivative is also zero), as

ηabcd =
√
−g εabcd , ηabcd =

1√−g ε
abcd.

In a positively-oriented basis, the Levi-Civita tensor ε would have
components defined by ε0123 = 1. This amounts to a choice of orien-
tation of the four-dimensional manifold in where the orthonormal basis
eµ represents a Lorentz frame with e0 pointing toward the future and
eδ being a right-handed triad.

As a result, for two global orientations o and o′ on V4, we have
at most two total orientations o and −o, which define the orientable

volume element η as
o θ0∧ θ1 ∧ θ2 ∧ θ3 .

Now, on V4, we define the temporal orientation or time orientation

t with respect to the set y ∈ E(V4), by one component ty =±1, such
that if y = y′F, we have

ty = ty′tF

where V4 admits at most two time orientations t and −t.
Any vector e0 (e20 = 1) at x is oriented towards the future (re-

spectively the past), when the components of t with respect to the
orthonormal frames (e0 , eδ) is 1 (respectively −1).

§1.2. The gamma matrices. In what follows, Λ∗ is the complex
conjugate of an arbitrary matrix Λ, ΛT is the transpose of Λ, while Λ̃
is the classical adjoint of Λ.

Let ℜ be the real numbers set on which the vector space is defined.
This vector space is spanned by the 16 matrices

I , γµ, γµγν , γµγνγα , γµγνγαγβ , (4)

where I is the unit matrix, and the four gamma matrices are denoted by

γµ ≡ γ
µA
B . (5)

Note that all indices are distinct here.
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With the tensor ηµν , we write the fundamental relation

γµγν + γνγµ = −2ηµν I , (6)

which is verified by the gamma matrices, with the following elements

γ0 = γ0 = i















0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0















−γ1 = γ1 = i















0 0 0 +1

0 0 +1 0

0 −1 0 0

−1 0 0 0















−γ2 = γ2 = i















0 0 0 −1

0 0 +1 0

0 +1 0 0

−1 0 0 0















−γ3 = γ3 = i















0 0 +1 0

0 0 0 −1

−1 0 0 0

0 +1 0 0




















. (7)

This system of matrices is also called a standard representation, as
opposed, for example, to the Majorana representation [3, p. 108], or to
the usual spinorial representation.

We note that
γ̃µ = −ηµµγµ (8)

and also

det(γµ) = 1 , tr(γµ) = 0 , tr(γµγν) = 0 , tr(γµγνγσ) = 0

for µ 6= ν 6= σ, etc.

§2. The spinor concept

§2.1. The isomorphism p. We shortly recall the definition of the
spin group Spin(4) which is said to be the covering of L(4). The pro-
jection p of Spin(4) onto L(4) is such that if

A = (Aµ′

ν ) = pΛ , A ∈ L(4) , Λ ∈ Spin(4)
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we must have
ΛγµΛ

−1 = Aν′

µ γν′ ,

where p is regarded as the isomorphism of the spin group S(4) on the
Lorentz group L(4).

In view of expressing the spinors as physically observable quantities,
one could start with the regular Riemannian line-element

ds2 = gab dx
adxb,

which becomes in Zelmanov’s theory

ds = c2dτ2 − dσ2,

where

dτ =
√
g00 dt+

1

c

g0 idx
i

√
g00

,

dσ2 = hik dx
idxk

and
hik = −gik +

g0 i g0k

g00
.

(See [4], formula 1.29, in accordance with formula 84.6 of §84 [5].)
Hence considering hiµh

µ
k = δik, one could then start by writing the

physically observable Dirac matrices as simply verifying the relation

γiγk + γk γi = −2δik I

but the matrix γ0 (x) is omitted and the isomorphism p can no longer
apply.

Therefore, writing the Pfaffian interval as ds2 = ηµν θ
µθν allows us

to preserve this isomorphism, which is the fundamental feature of any
relativistic spinor theory. Like in the classical treatment, we thus main-
tain the relation (6), so that the gamma matrices are kept non-local.
Proceeding with the Lichnérowicz formalism, we shall see that there is
another way to obtain the spinors as unique observable quantities within
Zelmanov’s theory.

§2.2. Spinor definitions. From E(V4), we define a principal fiber
space denoted by S(V4) whose each point z represents a general spinor
frame: at this stage, it is essential to understand that Spin(4) is here its
structural group. V4 is therefore a vector space of 4×4 matrices with
complex elements, which is acted upon by the Spin(4) group [6].
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Let us denote by π the canonical projection of S(V4) onto V4, and
p the projection of S(V4) onto E(V4), so that a tensor of V4 is referred
to its frame by y = pz.

The contravariant 1-spinor ψ at x ∈ V4 is defined as a mapping
z → ψ(z) of π−1(x) onto V4.

The covariant 1-spinor φ at x is a mapping z → φ(z) of π−1(x) onto
the space V4, dual to V4.

The contravariant 1-spinor ψ forms a vector space Sx on the complex
numbers, whereas the covariant 1-spinor forms the vector space S′x
dual to Sx. The contravariant 1-spinor ψ has also its covariant 1-spinor
counterpart expressed by

ψ̄ = tψ̃ β , (9)

which is classically known as the Dirac conjugate, also expressed by

ψ̄ = ψ∗γ0 (10)

with t = +1. Herein, β is a matrix defined below in (12).
Conversely, any covariant 1-spinor φ is now the image of the con-

travariant 1-spinor tβφ.

§2.3. The charge conjugation and the adjoint operation. An
antilinear mapping C of Sx onto itself exists. It maps a 1-spinor ψ to
another 1-spinor such as

C : ψ −→ ψC = ψ∗.

We readily see that C2 = Identity(ψ → ψ), while C is known as the
charge conjugate operation.

In particular, the charge conjugate of the covariant 1-spinor φ is

Cφ = ψ∗

hence
(Cφ, ψ) = (φ,Cψ)∗.

The relation (6) results from the identity (uµγµ)
2 =−(uµuνηµν)I,

where uµ ∈ C (complex numbers), thus from (8) we find

γ0 γµγ
−1
0 = − γ̃µ . (11)

Introducing now the real matrix β = iγ0 which verifies β2 = I, the
important relation can be derived from (10)

βγµβ
−1 = − γ̃µ . (12)
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By defining an antilinear mapping A of Sx onto S′x as

A : ψ −→ ψ̄ = tψ̃ β (13)

we have the Dirac adjoint operation A.
We now consider a contravariant 1-spinor ψ which satisfiesCψ = ψ∗.

Thus
ACψ = tψTβ .

On the other hand, Aψ = tψ̃β, from which we infer

CAψ = tψT,

i.e. CAψ=− tψTβ. Therefore

ACψ = −CAψ.

The Dirac adjoint operator and the charge conjugation anticommute

on the 1-spinors [7].

§3. The Riemannian Dirac equation

§3.1. The spinor connection. In order to write the Schrödinger
equation under a relativistic form, Dirac introduced a four-component
wave function ψA (see [8] and [9, p. 252]) expressed with the gamma

matrices. In the classical theory, the expression γµAB ∂µ is known as the
Dirac operator, and it is customary to omit the spinor indices A,B by
simply writing γAµB so as to get γµ∂µ.

In a Riemannian situation, the derivative ∂µ becomes Dµ with a
Riemannian spinor connection defined as follows:

N = − 1

4
Γµνγµγν = − 1

4
Γµ
νγµγ

ν. (14)

Within a neighbourhood U of E(V4), we define a connection 1-form
Γ that is represented by either of the two matrices Γµ

ν or Γµν , and whose
elements are linear forms.

The matrix N defines the spinor connection corresponding to Γ.
The elements of N are given by the local 1-forms

NA
B = − 1

4
Γµ
ν γ

A
νC γ

νC
B .

By means of the Riemannian connection Γµ
να with respect to the

frames in U, the corresponding coefficients of N are written

NA
Bα = − 1

4
Γµ
να γ

A
µC γ

νC
B . (15)
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§3.2. The Riemannian Dirac operators and subsequent Dirac

equation. Some inspection shows that the absolute differential of the
gamma matrices is given by

D γµ = dγµ + Γµ
νγ

ν + (Nγµ − γµN) (16)

and this differential is shown to be zero. With (15) it can also be inferred
that the covariant derivative of a spinor ψA is

Dµψ
A = ∂µψ

A +NA
Bµψ

B (17)

and for the covariant 1-spinor φ

Dν φA = ∂νψA −NB
AνψB .

Introducing now the Riemannian Dirac operators W and W̄ as

Wψ = γµDµψ , W̄φ = −Dµφγ
µ (18)

for a massive spin- 12 -field, the Riemannian Dirac equations [10] are writ-
ten as

(W −m0c)ψ = 0 , (19)
(
W̄−m0c

)
φ = 0 , (20)

where the rest mass m0 is usually attributed to the associated particle.
Classically, the Dirac massive equation is always written with the

contravariant 1-spinor ψ, satisfying the free field equation (19) (no ex-
ternal interacting field).

In accordance with our previous results, the Dirac adjoint ψ̄ thus
satisfies (

W̄−m0c
)
ψ̄ = 0 . (21)

§3.3. The Dirac current vector density. In order to obtain the
physically observable spinor quantities we are aiming at, we first de-
fine a space-time vector which is entirely expressed through the spinor
formulation. For this purpose, we will rely on the Dirac current vec-
tor which is formally inferred from the Dirac Lagrangian of a massive
fermion field. Such a Lagrangian is shown to be [11]

LD =
1

2

[
ψ̄ γµDµψ − (Dµ ψ̄)γ

µψ
]
−m0c ψ̄ψ . (22)

An alternative formula is given by

LD = ψ̄ (γµ −m0c)ψ.

Since these forms differ only by a divergence which vanishes at infin-
ity, they generate the same action and correspond to the same physics.
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Following Noether’s theorem, we now apply the invariance rule to
LD (22) upon the global transformations (where U is a positive scalar).

ψ −→ eiUψ, ψ̄ −→ ψ̄ e−iU

for linear transformations of ψ, the respective Lagrangian variation is

δLD = i ψ̄ γµψDµ δU = Dµ

(
i ψ̄ γµψ δU

)
−Dµ

(
i ψ̄ γµψ

)
δU

from which we expect to infer a current density (jµ)D through a classical
action variation

δSD = −
∫

Dµ(j
µ)D δUη , (23)

where we have set
(jµ)D = i ψ̄ γµψ . (24)

If ψ is a solution of the Dirac field equations (19), δSD vanishes for
any δU , so

Dµ(j
µ)D = 0 . (25)

Thus we have defined the conserved Dirac current vector density

(jµ)D which is a real vector. To prove this, we write (jµ)D with the aid
of (12)

(jµ)D = itψ̃β γµψ .

Applying the usual adjoint operation (jµ)∗D = −itψ̃ γ̃µβψ and tak-
ing into account γ̃µβ = −βγµ, we eventually find

(jµ)∗D = itψ̃ γµψ = i ψ̄ γµψ = (jµ)D (26)

which concludes the demonstration.

§4. The Dirac-Zelmanov equation

§4.1. The unique physically observable spinor. We shall now
suggest a way to express the 1-contravariant spinor through the charac-
teristics of Zelmanov’s formalism of General Relativity and Riemannian

geometry (i.e. the theory of chronometric invariants).
Consider the monad world-vector

bµ =
dxµ

ds
. (27)

According to Zelmanov’s theorem, for any vector Qµ, two quantities
are physically observable:

bµQµ =
Q0√
g00

(28)
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and
hiµQ

µ = Qi. (29)

At first glance, all one would have to do, is simply replaceQµ with jµ.
However, in this case, we readily see that Q0 (or j0 ) must differ from
Q0 (or j0 ) which seems to contradict the matrix definition for γ0 (7).
Therefore, we will tackle the problem in a different manner.

With the aid of the standard gamma matrices (7), the components
of jµ are easily derived:

j0 = t
(
ψ1ψ1∗ + ψ2ψ2∗ + ψ3ψ3∗ + ψ4ψ4∗

)

j1 = −t
(
ψ2ψ1∗ + ψ1ψ2∗ − ψ4ψ3∗ − ψ3ψ4∗

)

j2 = −it
(
ψ2ψ1∗ − ψ1ψ2∗ − ψ4ψ3∗ + ψ3ψ4∗

)

j3 = −t
(
ψ1ψ1∗ − ψ2ψ2∗ − ψ3ψ3∗ + ψ4ψ4∗

)





. (30)

The vector jµ retains all the space-time properties as j0 is shown
to lie within the (future) half-light cone for t = +1. Analogously, the
vector j can be isotropic in which case jµjµ must be zero.

Like in the Riemannian picture, we make explicit jµjµ as follows:

jµjµ = (j0 )2 − (ji)2 = (j0 )2 − jiji . (31)

Then, we remark that (31) is formally similar to Zelmanov’s expres-
sion for an arbitrary vector Aµ

AµAµ = a2 − aiai = a2 − hik a
iak (32)

setting jµ = Aµ, we then have

a =
j0√
g00

, (33)

ai = ji, (34)
with

j0 =
a+ via

i

c

1− w
c2

, ji = −ai −
via

c
, (35)

where vi =− cg0i√
g00

is the linear velocity of space rotation, while w=

= c2(1−√
g00 ) is the gravitational potential.

Thus, we see that the only combination of the observable spinor
components are (with t = +1, see above)

t
(
ψ1ψ1∗ + ψ2ψ2∗ + ψ3ψ3∗ + ψ4ψ4∗

)
=
a+ via

i

c

1− w
c2

. (36)
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We have now reached our goal by linking the first spinor combination
of (30) with relations (34) and (36), i.e. we have found the unique
physically observable spinors. This mathematical approach also enables
us to note that j0 and j0 have distinct expressions within the framework
of Zelmanov’s theory.

§4.2. The Zelmanov spinor connection. Consider now the Rie-
mannian connection coefficients Γµ

να which are just the Christoffel sym-
bols (i.e. Levi-Civita connection) with respect to any coordinate basis.

We define the Zelmanov spinor connection as

(
NA

Bα

)
Zel

= − 1

4
(Γµ

να)Zel γ
A
µC γ

νC
B . (37)

The components of the (Γµ
να)Zel have been deduced by Zelmanov as

the unique physically observable quantities

Γ0
00 = − 1

c3

[
1

1− w

c2

∂w

∂t
+
(
1− w

c2

)
vkF

k

]
,

Γk
00 = − 1

c2

(
1− w

c2

)2
F k,

Γ0
0 i =

1

c2

[
− 1

1− w

c2

∂w

∂xi
+ vk

(
Dk

i +A·k
i· +

1

c2
viF

k

)]
,

Γk
0 i =

1

c

(
1− w

c2

)(
Dk

i +A·k
i· +

1

c2
viF

k

)
,

Γ0
ij = − 1

c
(
1− w

c2

)
{
−Dij +

1

c2
vn ×

×
[
vj
(
Dn

i +A·n
i·

)
+ vi

(
Dn

j +A·n
j·

)
+

1

c2
vivjF

n

]
+

+
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
− 1

2c2
(
Fivj + Fj vi

)
−∆n

ij vn

}
,

Γk
ij = ∆k

ij−
1

c2

[
vi
(
Dk

j +A
·k
j·

)
+ vj

(
Dk

i +A
·k
i·

)
+

1

c2
vivjF

k

]
.

where

∆i
jk =

1

2
him

(∗∂hjm

∂xk
+

∗∂hkm

∂xj
−

∗∂hjk

∂xm

)
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are the chronometrically invariant Christoffel symbols, for which the
fundamental differential operator is

∗∂

∂xi
=

∂

∂xi
− g0 i

g00

∂

∂x0
.

Associated with the global non-holonomic vector vi, Zelmanov’s an-
gular momentum tensor Aik — ultimately characterizing the space as
non-holonomic and non-isotropic — is given by

Aik =
1

2

(
∂vk

∂xi
− ∂vi

∂xk

)
+

1

2c2
(Fivk − Fkvi) .

Here

Dik =
1

2
√
g00

∂hik

∂t

is the space deformation tensor and

Fi =
1

1− w
c2

(
∂w

∂xi
− ∂vi

∂t

)

is the gravitational inertial force vector.

§4.3. The massive Dirac field interacting with an electromag-

netic field. Let us consider here the Lagrangian for a charged Dirac
massive field coupled with a potential Aµ

L(ψ, Aµ) = L(ψ) + L(Aµ)− eψAµ(j
µ)D

the coupling constant e is taken as a negative charge (i.e. the electron).
Taking into acccount the expression of the Dirac current density

(jµ)D = i(ψ̄ γµψ) (38)

we shall evaluate the variation of the Lagrangian L(ψ,Aµ).
After a simple but lengthy calculation, we obtain (omitting D in j)

δL(ψ,Aµ) =
[
δ ψ̄

(
γµ (Dµ − ieAµ)ψ̄ −m0cψ

)]
+

+
[(
−(Dµ + ieAµ)ψ̄ γ

µ −m0cψ
)
δψ

]
+

+
[
−Dν (DνAµ −DµAν)− ejµ

]
δAµ + divergence term. (39)

Extremalizing the action defined from L(ψ,Aµ), we get two (mas-
sive) field equations

γµ (Dµ − ieAµ)ψ = m0cψ , (40)

−(Dµ + ieAµ)ψ̄ γ
µ = m0cψ̄ , (41)
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and
δdA = ej . (42)

Under the conjugate operation, the following transformation

ψ −→ ψ(c)

takes a place, and the first equation (40) becomes

γµ (Dµ + ieAµ)ψ(c) = m0cψ(c) (43)

and it is interpreted as the positron equation which accounts for the anti-
electron or positron with a positive charge, when ψ(c) is substituted into
ψ. Thus, in equation (43), the rest mass m0 represents the positron.

Within the Zelmanov picture, the Dirac equation (40) will be uni-
quely written as

γµ
[
(Dµ)Zel − ie(Aµ)Zel

]
ψ′ = m0cψ

′ , (44)

where ψ′ is the modified spinor according to (36) and (Dµ)Zel is the
spinor derivative constructed from the components of (37).

As regards the four-potential (Aµ)Zel, we have the following compo-
nents

A0 = bµAµ
√
g00 . (45)

This scalar potential is a chronometrically invariant quantity, with
the associated vector components:

Ai = −hikAk − A0 vi

c
√
g00

. (46)

Concluding remarks. There is no ambiguity neither any loss of gen-
erality regarding the special choice of gamma matrices (7), as long as
they verify the fundamental relation (6). Therefore, assuming that the
inferred Dirac current is a space-time vector is here legitimate all the
more as this vector can be isotropic.

Based on this weak constraint, it has thus been possible to express
the contravariant 1-spinor ψ (or its combination) in terms of the gravi-
tational potential w and the linear velocity of space rotation vi.

The Dirac-Zelmanov equation for a massive field completes the scope
of the theory by implicitly displaying the non-holonomity and non-

isotropy tensor Aik and the tensor of deformation of space Dik through
the Zelmanov spinor connection.

In equation (44), the electron and its rest mass m0 are constant and
are independent of the observer, so even when the contravariant 1-spinor
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ψ is modified when viewed in the observer’s physical frame, the positron
equation (43) should also be true in Zelmanov’s theory.

But above all, the most salient feature of the present theory certainly
lies in that the Zelmanov theory entirely confirms the way Lichnérowicz
approached the spinor analysis in General Relativity.

It is indeed remarkable to note that the observable spinor formula-
tion requires the fundamental relation (6) to be maintained.

Any other current attempts to write down (6) as

γa(x)γb(x) + γb(x)γa(x) = −2gab I ,

where γa(x) = aµa(x)γµ are the mere local generalization of the gamma
matrices (see for instance [11, p. 25] or [12, p. 515]), can be definitely
ruled out.

It also means that the adopted metric form ds2 = ηµν θ
µθν clearly

appears to be the right choice for describing the spinor in General Rel-
ativity.

This is certainly the essential result of our short study, as it dramat-
ically shows that the chronometric (physically observable) properties of
Zelmanov are equivalent to a pure mathematical analysis (Lichnérowicz)
in perfect harmony with quantum theory (Dirac) and resulting experi-
mental data (i.e. existence of the positron).

Appendix. In mathematics, a vector cannot in general be considered
as an arrow connecting two points on the manifold M [14]. A tangent
vector V along a curve γ(t) at p, is considered as an operator (linear
functional) which assigns to each differential function f on M, a real
number V (f).

This operator satisfies the axioms:

Axiom I: V (f + h) = V (f) + V (h),

Axiom II: V (f h) = hV (f) + f V (h),

Axiom III: V (cf) = cV (f), where c = constant.

One shows that such a tangent vector can be expressed by

V = V a ∂

∂xa
,

where the real coefficients V a are the components of V at p, with re-
spect to the local coordinates (x1, . . . , x4) in the neighbourhood of p.
Accordingly, the directional derivatives along the coordinates lines at p
form a basis of the four-dimensional vector space whose elements are
the tangent vectors at p, i.e. the tangent space Tp.
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The basis ( ∂
∂xa ) is called a coordinate basis. On the contrary, a

general basis eν is formed by four linearly independent vectors eν ; any
vector V ∈ Tp is a linear combination of these basis vectors:

V = V αeα .

By definition, a 1-form (Pfaffian form) ζ maps a vector V into a
real number, with the contraction denoted by the symbol <ζ,V >, and
this mapping is linear.

The four linearly independent 1-forms θµ which are uniquely deter-
mined by

<θµ, eν> = δµν

form a general basis of the dual space T∗
p to the tangent space Tp. This

basis is said to be dual to the basis e of Tp. The bases eν , θ
µ are linear

combinations of coordinates bases:

eν = baν

(
∂

∂xa

)
, θµ = aµadx

a.
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7. Lichnérowicz A. Champ de Dirac, champ du neutrino et transformations C,
P, T sur un espace courbe. Ann. Institut Henri Poincaré, sec. A, 1964, vol. 3,
233–290.

8. Dirac P. A.M. The Principles of Quantum Mechanics. P.U.F. (Presses Univer-
sitaires de France), Paris, 1931.
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