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Abstract: We consider the Thorne-Morris static space-time worm-
hole, sustained by the so-called exotic matter which may produce a
huge space-time distortion to achieve hyper-fast interstellar travel.
Modifying this metric, we suggest such a particular type of matter by
means of the negative electromagnetic energy density. This possibility
relies on Maxwell’s equations, which are applied to time-varying elec-
tromagnetic fields, and synchronously time-varying electromagnetic
4-current densities. By choosing the proper phase displacements, the
time component of the electromagnetic stress-energy tensor displays
a negative energy density in part produced by the interacting elec-
tromagnetic potential superimposed onto the current density. The
positive energy part of this tensor does not make a contribution, since
it is confined at the outer vicinity of the wormhole.
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Introduction. During the last decades, many published papers were
devoted to space-time shortcuts among whom the space-time wormhole

model introduced by Thorne and Morris [1] can be selected. This con-
cept is very similar to the Einstein-Rosen bridge [2, p.198], but instead,
the wormhole connects two distinct Universes, referred to as the lower

and upper worlds. To be physically sustained, it is well-known that this
model requires a negative energy density which implies the existence of
exotic matter (as coined by Kip Thorne) and which classically violates
all energy conditions [3]. Apart from the averaged null energy condition

(ANEC), and the averaged weak energy condition (AWEC), we will be
also interested in a global energy condition [4] which is referred to as
the volume integral quantifier and which is linked to the Visser-Kar-
Dadhich (VKD) wormholes [5]. In this approach, the total (exotic)
energy is considered by performing a specific integration with respect
to the matter proper volume element, and the amount of the (global)
energy condition violations is measured when the integral becomes neg-
ative. This class of energy violations provides useful information and
in particular, it determines the optimum choice of the thickness of the
exotic matter layer threading the throat of the wormhole.

In Chapter 1, we first review the standard Lorentzian wormhole
model, and we modify the metric in order to include a particular break-
down in the shape function. This breakdown accounts for two re-
gions: the inner throat itself and an outer surrounding compact shell
that is asymptotically fading away in order to merge with the quasi-
Minkowskian Universe. Splitting the shape function into an inner region
and an outer close shell does not affect the general wormhole physics.
In Chapter 2, we investigate the possibility of using a variable electro-
magnetic field which interacts with a time-varying electric current, so
that the resulting energy-momentum tensor splits up into a positive part
and a negative part. This splitting is then required to correspond to the
wormhole shape function breakdown, so that the positive electromag-
netic free field contribution can be generated in the shell, i.e. outside
the throat, while keeping the negative energy part inside to provide the
necessary exotic matter, without violating the energy conditions.

Chapter 1. The Static Lorentzian Wormhole

§1.1. Definitions: the basic metric. In the signature +2, let us
consider a generic static space-time

ds2 = gab dx
2dxb = −e2Φ(r)dt2 + gµν dx

µdxν ,
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where we set G = c = 1. Latin indices (a, b) run from 0 to 3; Greek
indices (µ, ν, ) run from 1 to 3.

We then recall here the general static spherically symmetric worm-

hole solution

ds = −e2Φ(r) dt2 +
dr2

1− b(r)
r

+ r2
(

dθ2 + sin2θ dφ2
)

, (1.1)

where Φ(r) is related to the gravitational redshift and it is thus the so-
called redshift function, while b(r) is denoted the shape function since
it determines the shape of the wormhole.

An alternative way of expressing (1.1) is

ds = −e2Φ(r) dt2 + dl2 + r2(l)
(

dθ2 + sin2θ dφ2
)

, (1.2)

where we have set the proper radial distance

l(r) = ±

∫ r

r0

dr
√

1− b(r)
r

, (1.3)

which is required to be finite everywhere.
Herein l(r) decreases from l = +∞ in the upper world, to l = 0 at

the throat, and then from 0 to −∞ in the lower world.
A first traversability condition required for the wormhole is to be

horizon-free, i.e.
gtt = −e2Φ(r) 6= 0 ,

so that Φ(r) must also be finite everywhere in the throat.
This is the standard definition.

§1.2. Definitions: the modified metric. We now bring some
slight improvement and we re-define the function b(r) as follows

b(r) = 1− tanh (bworm + bout) , (1.4)

bworm and bout are here two disjoint smooth functions of r that respec-
tively correspond to the wormhole throat, and the outside Universe.
Inside the throat bout = 0, and

b(r) = 1− tanh bworm (1.5)

remains the true characteristic of the wormhole solution.
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Outside the wormhole, bout ≫ bworm, so we have

tanh (bworm + bout) → 1 , b(r) → 0 . (1.6)

Therefore, by definition Φ(r) → 0, and the metric (1.1) reduces to
the usual spherically symmetric solution of the Minkowski space

ds2 = −dt2 + dr2 + r2
(

dθ2 + sin2θ dφ2
)

. (1.7)

Introducing such an intrinsic breakdown for b(r) enables us to main-
tain the entire mathematical construction of the wormhole through the
new metric:

ds2 = − e2Φ(r) +
dr2

1− 1−tanh (bworm+bout)
r

+ r2
(

dθ2 + sin2θ dφ2
)

. (1.8)

Through this modification, we see that the standard wormhole is
now surrounded by a shell, representing a transient region where the
shape function starts to decrease asymptotically from b(r) to 0.

The trick is here obvious:

This shell does not belong to the inner throat, but is still part of
the wormhole geometry together with its physical properties.

We will explain this particular feature for achieving our initial goal
in the final course of our theory.

§1.3. The common concept

§1.3.1. The geometric description. The space-time wormhole
classically depicted in the Thorne-Morris model is formed with a static

layer of a particular matter type threading the throat, which was coined
by the authors as exotic matter (see formal definition below).

Our viewpoint is here different: we consider a dynamical object that
actually produces the required exotic matter to create the wormhole in
which it passes through. Hence it creates this space-time distortion, as
long as needed for its travel duration.

In the first stage, due to the spherically symmetric nature of the
concept and without loss of generality, we restrict the study to the
equatorial plane θ = π

2 , and the interval at t = const, so the basic
metric reads

ds2 =
dr2

1− b(r)
r

+ r2dφ2 (1.9)

still bearing in mind b(r) = 1− tanh (bworm + bout).
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The coordinate r decreases from +∞ to a minimum value r0 corre-
sponding to the location (radius) of the wormhole throat, where
b(r0)= r0, and then it increases from r0 to +∞. The object we have in
mind can be best conceived here, as a vertical cylinder centered about
the axis z with a radius r0 that reaches the inner layer of the exotic

matter it carries along.
The reduced metric (1.9) can be embedded into a 3-dimensional

Euclidean space, it is written in cylindrical coordinates r, φ, z as

ds2 = dz2 + dr2 + r2dφ2. (1.10)

The embedded surface has equation z = z(r), and the metric of this
surface is written

ds2 =

[

1 +

(

dz

dr

)2
]

dr2 + r2dφ2, (1.11)

from these latter two equations, we infer the slope

dz

dr
= ±

1
√

r
b(r) − 1

. (1.12)

In our picture, the inner layer of the exotic matter has the mini-
mum radius r = b(r) = r0, at which the embedded surface is vertical
(the slope dz

dr
→ ∞). See Fig. 1.

Fig. 1: Cross-section of the created throat.

Far from the exotic matter layer, r → ∞, dz
dr

→ 0, the space is
asymptotically flat in accordance with (1.6).

According to (1.3), an object tunnelling through the wormhole has
a velocity v(r) passing the throat at r which is measured by a set of
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static observers located at this point:

v =
dl

e2Φ(l)dt
= ±

dr
√

1− b
r

e2Φ(l)dt

. (1.13)

Once the travel through the created wormhole is completed, the
throat should flare out at the end of this creation. Calling r(z), the
embedding function, its inverse must satisfy the important equation at

or near the distance r0 to the exotic matter inner layer:

d2r

dz2
=

b− b′ r

2b2
> 0 , (1.14)

where the prime denotes the derivative with respect to the radial co-
ordinate r, and within the distance r0, inspection shows that the form
function b should satisfy to b′(r0) < 1.

The relation (1.14) is known as the flaring out condition.

§1.3.2. Acceleration gained by an object while traversing the

throat. In the present analysis, we will adopt a set of orthonormal
basis vectors which we regard as the proper reference frame of a col-
lection of observers remaining at rest in the coordinate system (t, and
fixed r, θ, φ).

In our case, the orthonormal basis vectors êa are expressed by

êt = e−Φ et

êr =

√

1−
b

r
er

êθ =
eθ

r

êφ =
eφ

r sin θ















































. (1.15)

With this particular choice, the metric components reduce to the
Minkowskian system

êaêb = ĝab = ηab = {−1, 0, 0, 0}. (1.16)

In a general basis, the four-velocity for a static observer is

ua =
dxa

dτ
=
(

ut, 0, 0, 0
)

=
[

e−Φ(r), 0, 0, 0
]

. (1.17)
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From the decomposition of the covariant derivative of ua, we can
extract its four-acceleration

aa = ua
;b u

b, (1.18)

which reduces, by (1.11), to the following components (denoting the
proper time by τ)

at = 0

ar = {rtt}
(

dt
dτ

)2
= Φ′

(

1− b
r

)







, (1.19)

where ar is the non-null radial component acceleration required for
the observer to follow a geodesic inside the throat (free-fall condition).
Herein {abc} are the Christoffel symbols of the second kind.

We now revert to our orthonormal basis êa, and we express the
object’s proper reference frame in terms of the Special Relativity trans-
formation factor γ = 1√

1−v2
, as

(ê0)SR = γ êt ± γ v êr

(ê1)SR = γ êr ± γ v êr

(ê2)SR = eθ

(ê3)SR = eφ



























. (1.20)

Referred to this basis, the object’s four-acceleration in its proper
reference frame is

(âa)SR = (ûa
;b û

b)SR .

In the (t, r, θ, φ) coordinate frame, the object moves radially and its
acceleration is specialized to t, i.e. at = ut;ru

r − {atb}u
aub.

Setting a= |a| êµ, we note that at =aet=(aêµ)et =− γ veΦ|a|, and
we finally arrive at

|a| =

[

√

1−
b

r
e−Φ (γeΦ)′

]

. (1.21)

If we now imagine that the object contains some humanoid crew,
the acceleration felt by the occupants should obviously not exceed an
earth-like gravity.

Therefore the expanded acceleration (âa)SR should satisfy the mag-
nitude constraint (⊕ means the Earth)

a 6 g⊕ . (1.22)
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§1.3.3. The exotic matter. Consider the Einstein tensor expressed
with our orthonormal basis êa:

Ĝab = R̂ab −
1

2
ĝab R .

In this situation, the components are greatly simplified as

Ĝtt =
b′

r2

Ĝrr = −
b

r3
+ 2

(

1−
b

r

)

Φ′

r

Ĝθθ =

(

1−
b

r

)[

Φ′′+(Φ′)2−
(b′r−b)Φ′

2r(r−b)
−

b′r−b

2r2(r−b)
+
Φ′

r

]

Ĝφφ = Ĝθθ























































. (1.23)

If we stick to Birkhoff’s theorem [6, p.157], which states that the only
vacuum solutions with (static) spherical symmetry is the Schwartzschild
solution, we are led to introduce a stress-energy tensor Tab. Then, the
field equations with a source Ĝab = 8πT̂ab induce here the sole non-zero
diagonal components of the energy-momentum tensor which classically
receive the following (but somewhat arbitrary) physical meanings

T̂tt = ρ(r) , (1.24)

T̂rr = −Ttens(r) , (1.25)

T̂θθ = T̂φφ = p(r) , (1.26)

where ρ(r) is the mass density of the layer, Ttens(r) is the radial ten-
sion (or transverse pressure) which is opposed to the radial pressure
p(r) ascribed to the mass density ρ of the special layer and which is
necessary to sustain the throat. Based on the evident proportionality
with the Einstein tensor Ĝab, the components of the energy-momentum
tensor are

ρ(r) =
1

8π

b′

r2
, (1.27)

Ttens(r) =
1

8π

[

b

r3
− 2

(

1−
b

r

)

Φ′

r

]

, (1.28)

p(r) =
1

8π

(

1−
b

r

)[

Φ′′+(Φ′)2−
(b′r−b)Φ′

2r(r−b)
−

b′r−b

2r2(r−b)
+
Φ′

r

]

. (1.29)
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From the center of the object to the inner layer of exotic matter,
those components reduce to

ρ(r0) =
1

8π

b′(r0)

r20
, (1.30)

Ttens(r0) =
1

8πr20
, (1.31)

p(r0) =
1

8π

1− b′(r0)

2r20

[

1 + r0Φ
′(r0)

]

, (1.32)

where b(r0) = 1− tanh (bworm).
In the classical wormhole theory, it is customary to introduce the

dimensionless function

ς =
Ttens − ρ

|ρ|
, (1.33)

which is also known as the exoticity function.
Using equations (1.27) and (1.28), we find

ς =
b
r
− b′ − 2r

(

1− b
r

)

Φ′

|b′|
. (1.34)

Taking into account the flaring out condition (1.14), the equation
(1.33) takes the form

ς =
2b2

r |b|

d2r

dz2
−

2r
(

1− b
r

)

Φ′

|b′|
, (1.35)

as ρ is finite and so is b′, while given the fact that
(

1− b
r

)

Φ′ → 0 at
the throat, we obtain the fundamental relation

ς (r0) =
(T0)tens − ρ0

|ρ0|
> 0 . (1.36)

The restriction
(T0)tens > ρ0 (1.37)

tells us that the radial tension that is required to sustain the throat,
must exceed the layer’s mass density.

This is a manifest violation of the weak energy conditions (WEC)
which states that for any timelike vector ua, we must have

Tab u
aub

> 0 . (1.38)

Indeed, consider a radially moving observer inside the throat: for
a sufficiently fast velocity, in his basis (1.20), this observer measures an
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energy density given by the time component of the stress-energy tensor

T̂00 = γ2 T̂tt + 2γ2v2 T̂tr + γ2v2 T̂rr = γ2(ρ0 − Ttens) + Ttens , (1.39)

which is seen negative, thus violating the energy conditions (1.38).
If the observer is static, we have the strict condition

ρ0 < 0 . (1.40)

§1.3.4. The totally exotic matter.

We now define the averaged null energy condition (ANEC) which is
satisfied along a null curve as

∫

Tab k
akbdλ > 0 , (1.41)

where ka is a null vector and λ is a generic affine parameter.
We then consider an extended type of energy condition involving the

volume integral quantifier, which is expressed by the two inequalities
∫

Tab u
aubdV > 0 ,

∫

Tab k
akbdV > 0 , (1.42)

where the integral is performed with respect to the proper volume ele-
ment dV of the exotic matter. With the null vector k̂a = (1, 1, 0, 0), the

expression T̂ab k̂
ak̂b is given by

ρ− (T0)tens =
1

8π

(

1−
b

r

)

[

ln

(

e2Φ

1− b
r

)]′

. (1.43)

Performing an integration by parts

IV =

∫

[

ρ− (T0)tens
]

dV =

= −
1

8π

[

(r − b) ln

(

e2Φ

1− b
r

)]∞

r0

−

∫ ∞

r0

(1 − b′)

[

ln

(

e2Φ

1− b
r

)]

dr.

At the throat r0 = b = [1− tanh(bworm)] and far from it, the space is
asymptotically Euclidean i.e. Φ = 0, so the first part of the right-hand
side vanishes, and the (global) energy violation condition is represented
by the volume integral

IV =

∫

[

ρ− (T0)tens
]

dV = −
1

8π

∫ ∞

r0

(1 − b′) ln

(

e2Φ

1− b
r

)

dr . (1.44)
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If we now want to evaluate the radial thickness of the negative energy
layer denoted by

∆ = rE − r0 , (1.45)

we just slice out a portion of the volume integral (1.44) as

IV =

∫

[

ρ− (T0)tens
]

dV = −
1

8π

∫ rE

r0

(1− b′) ln

(

e2Φ

1− b
r

)

dr . (1.46)

In the equatorial plane representation θ = π
2 , we will use this volume

portion to insert an electromagnetic fluid circulation self-provided by
an object (space ship) that creates the wormhole for a limited duration
necessary to jump between the upper and the lower worlds.

Remark: At first glance, one might be tempted to assume an arbi-
trary small quantities of ANEC-violating matter when rE → r0, however
further analysis would show that the smaller the amount of exotic mat-
ter, the longer the traversable time as measured by external clocks.

Indeed, setting the proper distance l = −l1 in the lower world, and
l = +l2 in the upper world, (assuming γ ≈ 1), we let v = dl

dτ
, so that

dτ = dl
v
, and

∆t =

∫ t1

t2

dt =

∫ +l1

−l2

e−Φ(r) dl

v
=

∫ rl

r2

e−Φ(r)

v

(

1−
b

r

)

dr . (1.47)

Chapter 2. Achieving the Production of Exotic-Like Matter

§2.1. The electromagnetic field contribution

§2.1.1. The physical stress-energy tensor. Due to the radially
symmetric model, Birkhoff’s theorem still apply to our modified metric
(1.6). However, this theorem does not forbid another type of energy-
momentum tensor as a source of the Einstein equations:

Gab = Rab −
1

2
gabR = 8πTab .

We will then postulate that these equations will possess another type
of energy source. Let us first consider the general electrical four-current
density

ja = µua, (2.1)

where µ is a time-varying charge density, coupled to an electromagnetic
field characterized by a four-potential Aa.
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The resulting energy-momentum tensor for the interacting system is
expressed in a general basis as

(T ab)elec =
1

4π

(

1

4
gabFcdF

cd + F aeF ·b
e·

)

+ gabjeA
e − jaAb, (2.2)

from which we extract the energy density as

(T 00)elec =
1

4π

(

1

4
FcdF

cd + F 0eF ·0
e·

)

+ jeA
e − j0A0. (2.3)

In our specially chosen orthonormal basis (1.15) , the following re-
lations hold

(T̂ 00)elec =
E2+B2

8π
+ jA , (2.4)

whereE andB are respectively the electric and magnetic field strengths
derived from the Maxwell tensor Fcd = ∂cFd − ∂dFc.

We suppose that the field potential Aa(ϕ,A) is given in the Lorentz
gauge, and we set for the three-potential A=Aβ and for the three-
current j= jβ .

Now, the key feature of our theory consists of implementing the
following decomposition equivalence:

(T̂00)elec = [(T̂ 00)elec]out + [(T̂ 00)elec]worm =
(E2+B2)

8π
+ jA . (2.5)

In this situation, the positive free radiative energy density E
2+B

2

8π is
de facto generated from an electromagnetic field which is located outside

the wormhole external-layer thickness (see form. 1.45):

bout > rE . (2.6)

This region is obviously the shell precisely defined by bout in the
modified metric (1.8).

The finite volume of exotic matter computed as per (1.46) in the
equatorial plane representation θ= π

2 should here contain a round-

shaped circuit (e.g. superconductive medium) wherein the time-varying
current j is circulating. In this case, the interacting term jA is ex-
hibiting its energy density inside this volume where the three-current
density j must take the angular form

jφ = µr

(

dφ

dt

)

(2.7)

with the mean radius r = rE+r0
2 .
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§2.1.2. Negative energy density of the interacting term. As
described in Maxwell’s equations, ∂aF

ab = 4πjb, the time component
of jb is just µ and the interacting term jA can be decomposed as

[(T̂ 00)elec]out =
E∇ϕ

4π
+ µϕ

[(T̂ 00)elec]worm =

(

−∇ϕ− ∂A
∂t

)

∇ϕ

4π
+ µϕ















, (2.8)

since E = −∇φ− ∂A
∂t

.
In (2.8) the first term in the brackets is always negative. As to

the last term, it is made negative when the time-varying scalar charge
density µ and the scalar potential ϕ are 180◦ out of phase (method
reached by the use of phasors).

Eventually, in our coordinate basis we need only consider now the
equivalence

−

(

∇ϕ+
∂A

∂t

)

+ 4πµϕ =
b′(r0)

2r20
(2.9)

always with b(r0) = 1− tanh (bworm) and with µϕ < 0.

§2.2. The exotic matter. Reverting now to the energy density ex-
pression (1.39) expressed in the basis (1.20)

T̂00 = γ2 T̂tt + 2γ2v2 T̂tr + γ2v2 T̂rr = γ2 (ρ0 − Ttens) + Ttens ,

we remember that for a collection of static observers the energy density

T̂00 = ρ0 < 0

is seen negative to match the exoticity condition (1.36).
If we then set for the negative matter

[(T̂ 00)worm]elec ≡ ρ0 < 0 , (2.10)

we do have an adequate density mass equivalent.
The substitution (2.10) should not conflict with the other diagonal

components of the stress tensor which now correspond to

[(T̂rr)worm]elec = −(Ttens)worm(r0) , (2.11)

[(T̂θθ)worm]elec = [(T̂φφ)worm]elec = p(r0) . (2.12)

Note that the mass of the charge has been here discarded in the
Einstein field equations since we here assume that the electromagnetic
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effects greatly prevail over masses which can thus be neglected. For
example, if we use the fundamental leptonic charge which is the electron
e, its rest mass is me = 9.1091×10−31 kg. In this case, for a given three-
volume V , we consider e as a point-wise charge, and the charge density
µ is then given by

µ =
∑

i

ei δ(x− xi),

where δ(x− xi) is the known Dirac function.

All the above reasoning naturally holds for the generalized metric
(1.8) when we drop out the constant equatorial plane restriction θ= π

2 .

Concluding remarks and outlook. We have just here briefly sketch-
ed the basic principle of a theory using an electromagnetic field suitably
interacting with a time-varying current in order to produce negative
energy needed to sustain the space-time wormhole co-generation. Our
approach heavily relies on the equivalences (2.10), (2.11) and (2.12)
which certainly deserve further scrutiny.

Far reaching traversability and stability conditions are beyond the
scope of this paper, as well as additional improved models tending to re-
duce exotic matter regions. Numerical estimates for the electromagnetic
field magnitudes can also be predicted in a separate paper.

However, the story of the space-time wormhole theory does not end
here. As soon as 1988, in their famous article [7], Morris, Thorne and
Yurtsever have suggested that the traversable wormhole (if feasible)
could be used as a time machine. Briefly speaking, they consider two
nearby whormoles’ mouths labeled 1 and 2. At t = τ = 0, the mouths
1 and 2 are at rest. The mouth 2 is next given an acceleration to
reach a near-light velocity, then it reverses its motion to return to its
initial (spatial) location. From an exterior observer who measures both
mouths, the (proper) time attached to the wormhole 2 is dilated with
respect to wormhole 1’s time, which has thus aged with respect to the
second one, when it has come back to its position. As a result, at
any later time, if one is tunnelling through the mouth 1, one emerges
from the mouth 2 as though one has travelled backward in time. Of
course, the reachable past can only start from the date of creation of
the time machine. We cannot however exclude that possible advanced
civilizations have already long engineered such a concept so that they
are able to travel in a far past perhaps anterior to our human existence.

So much for the principle. There are however a wide range of further
complex constraints which are to be overcome.
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Starting from chronal domains separated from an achronal domain
by a future chronology horizon (special type of the Cauchy horizon),
Hawking [8] asserted that tunnelling high frequency electromagnetic
wave packets would pile up against the separation line and finally drive
the energy density on the boundary of the hypothetical time machine to
infinity, thus destroying this machine at the instant it was created or at
least preventing anyone outside of it from entering through it. This is
known as the chronology protection conjecture: the so-called closed time

curves (CTCs) at the chronology horizon are thus deemed a physical
impossibility. This condition is supposed to be required in order to
avoid any time paradox, a cliché which has since been strictly ruled
out by several physicists (see for instance Klinkhammer, 1992 private
communication).

Quite recently, several authors [9, 10] have thus challenged these
statements, and the physicist Li-Xin Li [11] has even rejected the Hawk-
ing conjecture. Without going into sound technicalities, it suffices to
know that the vacuum metric fluctuations (close to the Planck length
scale) produce unwanted effects on the defocusing exerted by the worm-
hole on the amplitude of any classical high-frequency waves propagating
along a null geodesic (light) following the inner walls of the wormhole
axis, thus eventually causing it to collapse.

Analyzing the total cross sections for various particles’ pair collisions
or formations (see, for example, form. 94.6 in [12], and related formal
derivation), Li has strictly demonstrated that by inserting an opaque
absorption material with a definite transmission coefficient including
any of these cross sections into the inner wall of the wormhole, the metric
fluctuations tend to zero, leading to a stable Lorentzian wormhole.

Nevertheless, and although some real positive progresses are increas-
ingly emerging, we clearly see that a deeper amount of research work
remains to be carried out, before feasible solutions can eventually be
found.
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