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Abstract: General relativistic mechanics in gravitational fields ex-
terior to homogeneous spheroidal masses is developed using our new
approach. Einstein’s field equations in the gravitational field exterior
to a static homogeneous prolate spheroid are derived and a solution
for the first field equations constructed. Our derived field equations
exterior to the mass distribution have only one unknown function de-
termined by the mass or pressure distribution. The obtained solutions
yield the unknown function as generalizations of Newton’s gravita-
tional scalar potential. Remarkably, our solution puts Einstein’s geo-
metrical theory of gravity on same footing with Newton’s dynamical
theory; with the dependence of the field on one and only one unknown
function comparable to Newton’s gravitational scalar potential. The
consequences of the homogeneous spheroidal gravitational field on the
motion of test particles have been theoretically investigated. The ef-
fect of the oblate nature of the Sun and planets on some gravitational
phenomena has been examined. These are gravitational time dila-
tion, gravitational length contraction and gravitational spectral shift
of light. Our obtained theoretical value for the Pound-Rebka experi-
ment on gravitational spectra shift (2.578×10−15) agrees satisfactorily
with the experimental value of 2.45×10−15. Expressions for the con-
servation of energy and angular momentum are obtained. Planetary
equations of motion and equations of motion of photons in the vicin-
ity of spheroids are derived; having additional spheroidal terms not
found in Schwarzschild’s space-time.
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Chapter 1. Introduction

§1.1. Background of the problem

§1.1.1 The nature of gravitation

General Relativity is the geometrical theory of gravitation published
by Albert Einstein in 1915/1916. It unifies Special Relativity and Sir
Isaac Newton’s law of universal gravitation with the insight that gravi-
tation is not due to a force but rather a manifestation of curved space
and time, with the curvature being produced by the mass-energy and
momentum content of the space-time. General Relativity is the most
widely accepted theory of gravitation.

After his theory of Special Relativity which elegantly describes me-
chanics in electromagnetic and empty spaces, Einstein expected gravita-
tion to have the same nature as electromagnetism and hence fit into Spe-
cial Relativity. So Einstein sought a “Maxwellian” type of laws for the
gravitational field. That effort by Einstein failed [1]. Einstein concluded
that gravitation is of an entirely different nature from electromagnetism
which is a dynamical phenomenon. Consequently, he used geometrical
quantities (tensors) for the description of gravitation instead of the dy-
namical quantities such as force and potential. Secondly, Einstein re-
alized that Newton’s laws of gravitation satisfied Galileo’s principle of
relativity according to which the laws of physics take the same form in
all inertial reference frames. Consequently, Einstein also introduced his
principle of General Relativity which asserts that “The laws of physics
take the same form in all reference frames” Thus, Einstein constructed
his theory of gravitation founded on his principle of General Relativity
using tensors [1].

§1.1.2. The space-time of General Relativity

In Special Relativity, space-time has four dimensions (µ = 0, 1, 2, 3) and
there always exist a global coordinate system in which the world-line
element or proper time takes the form

c2dτ2 = ηµσ dx
µdxσ , (1.1)

where ηµσ is a special relativistic metric tensor given by η00 =1, η11 =
= η22 = η33 =−1 (ηµσ =0, µ 6= σ). Such a coordinate system is said to
be Cartesian. In a non-Cartesian coordinate system such as a spherical
or spheroidal coordinates, the world-line element of space-time may be
written as [2],

c2dτ2 = gµσ dx
µdxσ , (1.2)
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where gµσ is the corresponding metric tensor which is generally different
from the Cartesian metric tensor ηµσ . In practical calculations, the
metric is most often written in coordinates in which it takes the following
form

ds2 = gµν dx
µdxν . (1.3)

According to the philosophy of General Relativity (GR), the effect
of gravitation is contained in the metric tensor field gµσ. Thus, in
Einstein’s theory of gravity, the gravitational field is promoted to a
space-time metric gµσ.

Schwarzschild in 1916 constructed the first exact solution of Ein-
stein’s gravitational field equations. Schwarzschild’s solution is one of
the physically interpretable solutions of Einstein’s field equations [3].
Schwarzschild metric tensor field is that due to a static spherically
symmetric body situated in empty space such as the Sun or a star.
Schwarzschild metric has been the basis of theoretical investigations of
gravitational phenomena in Einstein’s theory of gravitation. This is in
spite of the fact that the Sun and most planetary bodies in the Solar
System are not perfectly spherical but oblate spheroidal in shape [4].

§1.2. Statement of the problem

From the inception of Newton’s dynamical theory of gravitation in the
17th century, the planets and Sun have been treated as perfectly spher-
ical bodies. For example in the motion of terrestrial penduli, projectiles
and satellites, the Earth is regarded as perfectly spherical in geometry.
Similarly in the motions of the planets, comets and asteroids in the So-
lar System, the Sun is regarded as perfectly spherical in geometry and
also, in Einstein’s geometrical theory of gravitation (General Relativ-
ity). The motions of the planets and photons in the Solar System are
treated under the assumption that the Sun is a perfect sphere. It has
however, been realized experimentally that the Sun and planets in the
Solar System are more precisely oblate spheroidal in geometry [4] (see
Table 1 below).

Obviously, the oblate spheroidal geometries of these bodies (Table 1)
has corresponding effects on their gravitational fields and hence the
motions of test particles in these fields. Towards the investigation of
these effects in Newton’s theory of gravitation; the gravitational scalar
potential due to an oblate spheroidal body and Newton’s equations of
motion in the gravitational field of an oblate mass have been derived [4].

The prolate spheroid is the shape of some moons in the Solar System.
Examples are Mimas, Enceladus, and Tethys (moons of Saturn) and
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Body Oblateness

Sun 9×10−6

Mercury 0
Venus 0
Earth 0.0034
Mars 0.006
Jupiter 0.065
Saturn 0.108
Uranus 0.03
Neptune 0.026

Table 1: Oblateness of bodies in the Solar System.

Miranda (moon of Uranus). The prolate spheroidal geometry is also
used to describe the shape of some nebulae (a nebula is a region or
cloud of interstellar dust and gas appearing variously as a hazy bright
or dark patch) such as the Crab Nebula [5]. Also, the existence of
rotating prolate spheroidal galaxies has been known for decades, yet, a
theoretical model based on Newton’s or Einstein’s gravitational theories
remains elusive [6].

The metric tensor for a gravitational field is the fundamental start-
ing point in the studies of gravitational fields in Einstein’s geometrical
theory. With the metric tensor, Einstein’s field equations can be de-
rived and solved. There is no general method yet of finding rigorous
solutions of Einstein’s field equations [1]. In order to study general rela-
tivistic mechanics (Einstein’s theory of gravitation) in oblate spheroidal
gravitational fields, Howusu and Uduh [7] sought the covariant metric
tensor exterior or interior to a massive oblate spheroidal body in oblate
spheroidal coordinates as;

g00 = e−F , (1.4)

g11 = − e−G, (1.5)

g22 = − e−H , (1.6)

g33 = − a2
(

1− η2
) (

1 + ζ2
)

, (1.7)

gµν = 0 , (1.8)

where F , G and H are functions of η and ζ only and a is a constant
parameter. With this metric, they constructed gravitational field equa-
tions exterior or interior to a massive oblate spheroidal body. The field



36 The Abraham Zelmanov Journal — Vol. 5, 2012

equations they obtained are non linear second order differential equa-
tions and have three unknown functions. The major setback of the use
of this metric, equations is that the introduction of three unknown func-
tions, F , G and H makes the field equations obtained very complex and
this compounds with the non linearity of the field equations to make
them almost practically unsolvable and physically uninteresting.

Howusu [8] in an attempt to address the loop holes, difficulties and
shortcomings in their previous approach, realized that a general and
standard metric tensor exterior to all distributions of mass or pressure
within regions of all regular geometries can be obtained by extending
the Schwarzschild’s metric to the particular regular geometry. The most
interesting and important fact about this new method is that the gen-
eralized metric tensor obtained is not an exponential function and has
only one unknown function. It is also instructive to note that the un-
known function in this case can be satisfactorily approximated to the
Newtonian gravitational scalar potential exterior to the astrophysical
body under consideration and hence makes physical interpretations sim-
pler. This new approach is thus computationally less cumbersome and
physically more applicable in principle than the previous approach.

This work examines the effect of the oblate spheroidal nature of the
Sun and planets on some gravitational phenomena using this new ap-
proach. The motion of planets and photons in the Solar System are
also investigated. These effects include gravitational spectral shift of
light, gravitational length contraction and gravitational time dilation.
We equally construct the generalized Lagrangian for this field and use it
to study orbits in homogeneous oblate spheroidal space-time [9–11]. In
this research work, we also start the study of static homogeneous prolate
spheroidal gravitational fields using this new approach. Einstein‘s grav-
itational field equations exterior to static homogenous prolate spheroids
are derived. Solutions to the derived field equations are also constructed
and the consequences of the field on the motion of test particles are also
investigated [12, 13].

§1.3. Objectives of the study

• Derivation of Einstein’s gravitational field equations exterior to
static homogeneous (time independent) prolate spheroidal distri-
butions of mass as an extension of Schwarzschild’s metric (that is
using the new approach);

• Solutions to field equations derived and consequences to the mo-
tion of test particles;
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• Derivation of the planetary equation of motion and the equation
for the deflection of light in the gravitational field exterior to ho-
mogenous (time independent) spheroids (prolate and oblate);

• Investigation of the effect of the oblate spheroidal nature of the
Sun and planets on some gravitational phenomena (gravitational
length contraction, gravitational time dilation and gravitational
spectral shift of light) using the new approach.

§1.4. Scope of the study

The philosophy of General Relativity describes gravitation as a geo-
metrical phenomenon with the effect of gravitation contained in the
covariant metric tensor for a gravitational field [14]. The metric tensor
exterior to all possible distributions of mass within oblate spheroidal
and prolate spheroidal geometries given by Howusu [8] is made explicit
and used to study these gravitational fields. Our knowledge of orthogo-
nal curvilinear coordinates, tensor analysis, Schwarzschild gravitational
field and general relativistic mechanics is used to achieve the objectives.

Basically, we concentrate on gravitational sources with time indepen-
dent and axially-symmetric distributions of mass within spheroids, char-
acterized by at most two typical integrals of geodesic motion, namely,
energy and angular momentum. From an astrophysical point of view,
such an assumption, although not necessary, could, however, prove use-
ful, because it is equivalent to the assumption that the gravitational
source is changing slowly in time so that partial time derivatives are
negligible compared to the spatial ones. We stress that the mass source
considered is not the most arbitrary one from a theoretical point of
view, but on the other hand, many astrophysically interesting systems
are usually assumed to be time independent (or static from another
point of view) and axially symmetric continuous sources [15].

§1.5. Significance of the study

Gravity is the least understood of all the fundamental forces in nature;
but mass and space, which are governed by gravity, are the building
blocks and fabric of our universe. General Relativity is the most fun-
damental theorem of physics about the nature of gravity. If we better
understand the nature of mass and space, we may be able to do things
previously undreamed of. So far studies of General Relativity have
yielded atomic clocks, guidance systems for spacecrafts and the Global
Positioning Systems (GPS). We cannot foresee all that can come from
a better understanding of space-time and mass-energy, but a theorem



38 The Abraham Zelmanov Journal — Vol. 5, 2012

about these fundamental subjects must be thoroughly examined if we
are to use it to our advantage [16]. This research work is a step in this
direction.

This research work substantially extends Einstein’s theory of grav-
itation (General Relativity) from the well known Schwarzschild space-
time to the experimentally more precise oblate and prolate spheroidal
space-times in the universe. Thus, the theoretical analysis of the motion
of particles of non-zero rest masses, gravitational length contraction,
gravitational time dilation and gravitational spectral shift is extended
from the gravitational field exterior to a spherical mass to the gravita-
tional field exterior to spheroidal masses. Our approach in this research
work unlike in earlier attempts makes it possible for us to obtain phys-
ically interpretable theoretical values for the above listed gravitational
phenomena in approximate gravitational fields exterior to bodies in the
Solar System. Our newly obtained expression for gravitational time di-
lation can now be incorporated into the contribution of gravitation in
the design of Global Positioning System (GPS). It is hoped that when
this is done, the precision rate of GPS will be greatly improved. This
work also opens the door for the theoretical investigation of the contri-
butions of the oblateness of the Sun and planets on other gravitational
phenomena such as geodetic deviation, radar sounding and anomalous
orbital precession, using this new approach. An insight is also provided
for the theoretical investigation of the contributions of the oblateness
and prolateness of some astronomical bodies on gravitational phenom-
ena. It is thus eminent that this work will serve as an eye opener for
the verification of small departures of theory from reality in astronomy
in the near future.

Chapter 2. Methodology

§2.1. General relativistic mechanics in Schwarzschild’s field

§2.1.1. Einstein’s gravitational field equations

It is well known that Einstein’s gravitational field equations are tenso-
rially given as [1]

Gµν = −
8πG

c4
Tµν , (2.1)

where Gµν is the Einstein tensor constructed from the metric tensor gµν
of the space-time; c is the speed of light in vacuum, G is the universal
gravitational constant and Tµν is the stress tensor which is the source of
the gravitational metric field. There are actually ten independent scalar
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equations in (2.1) because of the symmetry of the tensors involved in
the field equations. These equations are actually second order partial
differential equations and are generally non-linear.

§2.1.2. Schwarzschild’s metric

If one considers a spherical body of radius R0 and total rest mass M

distributed uniformly with density ρ0, then the general relativistic field
equations in its exterior region are given tensorially as [1]

Gµν = 0 . (2.2)

Thus, Einstein’s equations (2.2) give ten different differential equa-
tions with zero elements on the right-hand-side. Schwarzschild in 1916
constructed the first exact solution of Einstein’s gravitational field equa-
tions. It was the metric due to a static spherically symmetric body
situated in empty space such as the Sun or a star [1]. The result is as
follows

g00 = 1 +
2f(r)

c2
, (2.3)

g11 = −

(

1 +
2f(r)

c2

)

−1

, (2.4)

g22 = −r2, (2.5)

g33 = −r2 sin2 θ , (2.6)

where f(r) is an arbitrary function determined by the distribution. It
is a function of the radial coordinate r only; since the distribution and
hence its exterior gravitational field posses spherical symmetry. From
the condition that these metric components should reduce to the field
of a point mass located at the origin and contain Newton’s equations
of motion in the gravitational field of the spherical body, it follows
that f(r) is the Newtonian gravitational scalar potential in the exterior
region of the body [17].

§2.1.3. Schwarzschild’s singularity

The world-line element in Schwarzschild field is given by [8]

c2dτ2 = c2
(

1 +
2f(r)

c2

)

dt2 −

(

1 +
2f(r)

c2

)

−1

dr2 −

− r2dθ2 − r2 sin2θ dφ2. (2.7)
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In this field

f(r) = −
GM

r
, r > R0 . (2.8)

It has been known since 1916 that it is possible for a spherical body
to have a point outside it at which the Schwarzschild metric has a singu-
larity. This singularity is denoted by rs and is called the Schwarzschild
singularity. It is given by the condition

1−
2GM

c2rs
= 0 ,

thus,

rs =
2GM

c2
. (2.9)

For the Earth, rs =0.89 cm. This radius lies in the interior of the
Earth where the metric is precisely the interior metric and hence the
exterior metric is not applicable. For most physical bodies in the uni-
verse, the Schwarzschild radius is much smaller than the radius of their
surface. Hence for most bodies, there does not exist a Schwarzschild
singularity. It is however, speculated that there exist some bodies in
the universe with the Schwarzschild radius in the exterior region. Such
bodies are called black holes.

§2.1.4. Gravitational length contraction in Schwarzschild field

In Schwarzschild field, the space part of the metric is given by

ds2 =

(

1−
2GM

c2r

)

dr2 + r2dθ2 + r2 sin2θ dφ2. (2.10)

Thus, in the neighborhood of a massive body, two points of the
same angle θ and φ now have a separation which is different from the
corresponding separation in empty space. That is

ds =

(

1−
2GM

c2r

)

−1/2

dr ∼=

(

1 +
GM

c2r
+ · · ·

)

dr . (2.11)

This equation implies that ds>dr. In other words r is no longer
the measure of radial distances. Also, it follows that the length of
physical bodies is not conserved in a gravitational field. That is, length
is contracted in a gravitational field. This is the phenomenon of length
contraction. It is highly speculated that not only are material objects
(such as meter rules) contracted by gravitational fields but also space
itself is contracted by gravitational fields [2].
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§2.1.5. Gravitational time dilation in the spherical field

Consider, a clock at rest at a fixed point in Schwarzschild gravitational
field around a spherical body, then dr= dθ= dφ=0 and hence Schwarz-
schild’s world line element, reduces to

dt =

(

1−
2GM

c2r

)

−1/2

dτ ∼=

(

1 +
GM

c2r
+ · · ·

)

dτ . (2.12)

It can be deduced that dt>dτ and therefore, the coordinate time of
a clock in the gravitational field is dilated relative to the proper time.

§2.1.6. Motion of particles of non-zero rest masses in Schwarz-

schild field

A test mass is one which is so small that the gravitational field pro-
duced by it is so negligible that it does not have any effect on the space
metric. A test mass is a continuous body, which is approximated by its
geometrical centre; it has nothing in common with a point mass whose
density should obviously be infinite [1].

The general relativistic equation of motion for particles of non-zero
rest masses in a gravitational field are given by

d2xµ

dτ2
+ Γµ

νλ

dxν

dτ

dx2

dτ
= 0 , (2.13)

where Γµ
νλ are the coefficients of affine connection for the gravitational

field. For Schwarzschild field, the equations of motion are

ẗ+
k

c2r2
(

1− 2k
c2r

)

ṫ ṙ = 0 , (2.14)

θ̈ +
2

r
ṙ θ̇ − sin θ cosϑφ̇2 = 0 , (2.15)

φ̈+
2

r
ṙ φ̇+ 2 cot θ θ̇ φ̇2 = 0 , (2.16)

r̈ +
1

2
c2f1 (1 + f) ṫ2 −

1

2
f1 (1 + f)

−1
ṙ2 −

− r (1 + f) θ̇2 − r (1 + f) sin2 θ φ̇2 = 0 , (2.17)

where the dot denotes differentiation with respect to proper time,
k≡GM , f ≡− 2k

c2r
and f1≡ df

dr [1].
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§2.2 General relativistic mechanics in static homogeneous

spheroidal fields

§2.2.1. Oblate and prolate spheroidal coordinate systems

The oblate spheroidal coordinates are related to the Cartesian coordi-
nates by

x = a coshu cos v cosφ

y = a coshu cos v sinφ

z = a sinhu sin v











, (2.18)

where u> 0, 06 v6π and 06φ6 2π.
It is convenient to use the following transformations to eliminate the

hyperbolic functions and ease computation with this coordinate system;
ξ= sinhu, η= sin v and thus, the relation between Cartesian and oblate
spheroidal coordinate systems can be written as [18]

x = a
(

1− η2
)1/2 (

1 + ξ2
)1/2

cosφ

y = a
(

1− η2
)1/2 (

1 + ξ2
)1/2

sinφ

z = aηξ















, (2.19)

where 06 ξ <∞, −16 η6 1, 06φ6 2π and a is a constant parameter.
For a prolate spheroid unlike an oblate spheroid, the polar diameter

is longer than the equatorial diameter. The derivation of the prolate
spheroidal coordinate system is quite similar to the above derivation
of the oblate spheroidal coordinate system. The relation between the
Cartesian and prolate spheroidal coordinate systems is [18]

x = a
(

1− η2
)1/2 (

1 + ξ2
)1/2

cosφ

y = a
(

1− η2
)1/2 (

1 + ξ2
)1/2

sinφ

z = aηξ















, (2.20)

where 06 ξ <∞, −16 η6 1 and 06φ6 2π.

§2.2.2. Metric tensor exterior to an oblate spheroid and

a prolate spheroid

The invariant world line element in the exterior region of a static spher-
ical body is given generally according to [8], where f(r, θ, φ) is a gen-
eralized arbitrary function determined by the distribution of mass or
pressure and possess all the symmetries of the mass distribution. Thus,
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according to [8], the invariant world line element is

c2dτ2 = c2
(

1 +
2f(r, θ, φ)

c2

)

dt2 −

−

(

1 +
2f(r, θ, φ)

c2

)

−1

dr2 − r2 sin2θ dφ2. (2.21)

It is a well known fact of General Relativity that f(r, θ, φ) is approxi-
mately equal to Newton’s gravitational scalar potential in the space-time
exterior to the mass or pressure distributions within spherical geometry.

Now, let the spherical body be transformed, by deformation, into
an oblate spheroidal body in such a way that its density ρ0 and total
mass M remain the same and its surface parameter is given in oblate
spheroidal coordinates as

ξ = ξ0 = constant. (2.22)

Then, the general relativistic field equations exterior to an oblate
spheroidal body are mathematically equivalent to those of the spheri-
cal body. This is because they are both tensorially the same. Hence,
they are only related by the transformation from spherical to oblate
spheroidal coordinates. Therefore, to get the corresponding invariant
world line element in the exterior region of an oblate spheroidal mass
one could do the following:

1) Replace f(r, θ, φ) by the corresponding function f(η, ξ, φ) exterior
to oblate spheroidal bodies. Thus, a sound and astrophysically
satisfactory approximate expression for the function f(η, ξ, φ) is
obtained by equating it to the gravitational scalar potential exte-
rior to the distribution of mass within oblate spheroidal regions [8];

2) Transform coordinates from spherical to oblate spheroidal

(ct, r, θ, φ) → (ct, η, ξ, φ) (2.23)

on the right hand side of equation (2.7). The following components
of the metric tensor in the region exterior to a homogeneous oblate
spheroid in oblate spheroidal coordinates are obtained

g00 =

(

1 +
2

c2
f(η, ξ)

)

, (2.24)

g11 = −
a2

1 + ξ2 − η2

[

η2
(

1 +
2

c2
f(η, ξ)

)

−1

+
ξ2

(

1 + ξ2
)

(1− η2)

]

, (2.25)
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g12 = g21 = −
a2ηξ

1 + ξ2 − η2

[

1−

(

1 +
2

c2
f(η, ξ)

)

−1
]

, (2.26)

g22 = −
a2

1 + ξ2 − η2

[

ξ2
(

1 +
2

c2
f(η, ξ)

)

−1

+
η2

(

1− η2
)

(1 + ξ2)

]

, (2.27)

g33 = −a2
(

1 + ξ2
) (

1− η2
)

. (2.28)

It may be of interest to note that this metric tensor field unlike the
metric tensor field used by Howusu and Uduh [7] contains only one
unknown function, f(η, ξ) determined by the mass distribution and has
no exponential components.

The covariant metric tensor obtained above for gravitational fields
exterior to oblate spheroidal masses has two additional non-zero compo-
nents g12 and g21 not found in Schwarzschild field and the metric used
by Howusu and Uduh [7]. Thus, the extension from Schwarzschild field
to homogeneous oblate spheroidal gravitational fields has produced two
additional non zero tensor components and thus this metric tensor field
is unique. This confirms the assertion that oblate spheroidal gravita-
tional fields are more complex than spherical fields and hence general
relativistic mechanics in this field is more involved. This partly accounts
for the scanty research carried out on this gravitational field.

Similarly, it has been shown [8] that the covariant metric tensor
exterior to static homogeneous prolate spheroidal distributions of mass
is given as

g00 =

(

1 +
2

c2
f(η, ξ)

)

, (2.29)

g11 = −
a2η2

η2 + ξ2 − 1

[

(

1 +
2

c2
f(η, ξ)

)

−1

+
ξ2

(

1− ξ2
)

η2 (η2 − 1)

]

, (2.30)

g12 = g21 = −
a2ηξ

η2 + ξ2 − 1

[

− 1 +

(

1 +
2

c2
f(η, ξ)

)

−1
]

, (2.31)

g22 = −
a2ξ2

η2 + ξ2 − 1

[

(

1 +
2

c2
f(η, ξ)

)

−1

+
η2

(

η2 − 1
)

ξ2 (1− ξ2)

]

, (2.32)

g33 = −a2
(

1− ξ2
) (

η2 − 1
)

. (2.33)

This metric tensor has the same number of non-zero components
(six) as the metric exterior to an oblate spheroid. As has been noted in
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the case of oblate spheroids, f(η, ξ) is an arbitrary function determined
by the mass or pressure and hence it possesses all the symmetries of
the latter, a priori. Herein, f(η, ξ) can be conveniently approximated to
be equal to Newton’s gravitational scalar potential exterior to the mass
distribution.

The metric tensors by virtue of their construction satisfy the first
and second postulates of General Relativity. There are invariance of the
line element; and Einstein’s gravitational field equations [8].

§2.2.3. Gravitational field equations exterior to static homo-

geneous prolate spheroids

To obtain the contravariant metric tensor for the gravitational field
exterior to a prolate spheroid, gµν we use the fact that gµν is the cofactor
of gµν in g divided by g [18]. That is

gµν =
cofactor of gµν in g

g
, (2.34)

where

g = det

∥

∥

∥

∥

∥

∥

∥

∥

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

∥

∥

∥

∥

∥

∥

∥

∥

. (2.35)

The coefficients of affine connection Γσ
µσ for any gravitational field

are defined in terms of the covariant and contravariant metric tensor of
space-time as [18]

Γσ
µν =

1

2
gσv

(

gµν, λ + gvλ, µ − gµλ, v
)

, (2.36)

where the comma denotes partial differentiation with respect to λ, µ

and v. In this research work, we have constructed the 64 coefficients of
affine connection for this gravitational field.

The curvature tensor or the Riemann-Christoffel tensor Rδ
αβσ for

this field is defined in terms of the coefficients of affine connection as

Rδ
αβσ = Γδ

ασ, χ − Γδ
αβ, σ + Γε

ασΓ
δ
εβ − Γε

αβΓ
δ
εσ , (2.37)

where the comma denotes partial differentiation with respect to β and σ.
This research work has equally constructed the 256 components of this
tensor for homogeneous prolate spheroidal gravitational fields. From
the curvature tensor Rδ

αβσ for this gravitational field, we have defined
a second rank tensor Rαβ (called the Ricci tensor) for the gravitational
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field exterior to the prolate spheroid as

Rαβ = Rδ
αβδ . (2.38)

The 16 components of this tensor for the static homogeneous pro-
late spheroids have been constructed. From the Ricci tensor for our
gravitational field, we deduced a scalar R defined by

R = Rα
α = gαβRαβ (2.39)

called the curvature scalar for homogeneous spheroidal fields.
It is well known that for a region exterior to any astrophysical body,

the general relativistic field equations are given tensorially as

Gµν = 0 , (2.40)

where Gµν is the Einstein tensor, given explicitly as

Gµν = Rµν −
1

2
Rgµν , (2.41)

where Rµν is the Ricci tensor, R the curvature scalar and Gµν the
covariant metric tensor for the field. The Einstein field equations for
the gravitational field exterior to homogeneous prolate spheroids are
then built up.

These are partial differential equations with only one unknown. We
constructed the solution to the first field equation using our knowledge
of partial differential equations and path integral methods.

§2.2.4. Motion of test particles exterior to static homogeneous

prolate spheroidal masses

The general relativistic equation of motion and the coefficients of affine
connection for our field are used to study the motion of particles of
non-zero rest masses in this field. Einstein’s geometrical equations of
motion for test particles in the gravitational fields of prolate spheroidal
astronomical bodies are derived. These equations of motion have only
one unknown function. The solution of the first field equation is then
used to study the effect of the gravitational field on the motion of test
particles.

§2.2.5. Planetary motion and motion of photons in spheroidal

gravitational fields

In General Relativity, the change in energy of a freely moving pho-
ton is given by the scalar equation of the isotropic geodesic equations,
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which manifest on the work produced on a photon being moved along
a path [19]. Here, we use the generalized Lagrangian exterior to static
homogenous oblate and prolate spheroids to study orbits in this gravi-
tational field and obtain expressions for the conservation of total energy
and angular momentum in this field. The planetary equation of motion
and the equation for the deflection of light (photons) in the gravitational
field exterior to homogeneous oblate and prolate spheroidal bodies are
derived.

§2.2.6. Effects of oblateness of the Sun and planets on some

gravitational phenomena

Gravitational time dilation. In this research work, we show that
our theoretical extension of Schwarzschild’s gravitational field to oblate
spheroidal fields conform satisfactorily to the above proven experimental
and astrophysical facts. We consider a clock at rest in this gravitational
field such that dξ= dη= dφ=0. The world line element for the gravi-
tational field exterior to an oblate spheroidal mass is then used to give
a new expression for time dilation. We then use our new expression
to calculate the dilated coordinate time as a function of proper time
along the equator and pole of various bodies in the Solar System in
approximate homogeneous gravitational fields. This has not been done
in previous theoretical approaches to the subject.

Gravitational length contraction. In this research work, the space
part of the world line element in the gravitational field exterior to
an oblate spheroidal mass is used with the angular coordinates kept
constant. This gives us a new expression for gravitational length con-
traction. As an illustration of this gravitational phenomenon in oblate
spheroidal gravitational fields, we consider a long stick lying “radially”
along the equator in the approximate gravitational field of a static ho-
mogenous oblate spheroidal mass such as the Earth and we let the ξ-
coordinates of the ends be ξ1 and ξ2, where ξ2 >ξ1. With this, we find
the expression for its proper length and deduce that the length is re-
duced in the gravitational field. This computation affirms the soundness
of our extension and confirms the assertion from Schwarzschild’s metric
that not only is length contracted in gravitational fields but space also.

Gravitational spectral shift of light. We consider a beam of light
(photons) moving from a source or emitter at a fixed point in the grav-
itational field of the oblate spheroidal body to an observer or receiver
at a fixed point in the same gravitational field. Einstein’s equation of
motion for a photon is used to derive an expression for the shift in
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frequency of a photon moving in the gravitational field of an oblate
spheroidal mass. We then as an illustration of the expression obtained,
consider a signal of light emitted and received along the equator of the
static homogenous oblate spheroidal Earth (in the approximate gravita-
tional field). The ratio of the shift in frequency to the frequency of the
emitted light at various points in the equatorial plane and received on
the equator at the surface of the static homogeneous oblate spheroidal
Earth is computed using our derived equation. Also, the ratio of the
shift in frequency of light to the frequency of the emitted light on the
equator at the surface and received at various points along the equator
of the static homogeneous oblate spheroidal Earth is also computed. It
is worth noting that we deliberately used emitters and receivers at rest
in this gravitational field to avoid shifts in frequency due to Doppler
effect. However, in more practical cases, the gravitational spectral shift
is always compounded with the special relativistic shift (Doppler shift).
This yields a general expression for the shift in frequency when there is
a relative motion between the emitter and receiver.

Chapter 3. Results and Discussion

§3.1. General relativistic mechanics in homogeneous oblate

spheroidal gravitational fields

§3.1.1. Motion of particles of non-zero rest masses in homo-

geneous oblate spheroidal space-time

The contravariant metric tensor gµν for this gravitational field is ob-
tained as

g00 =

(

1 +
2

c2
f(η, ξ)

)

−1

, (3.1)

g11 = −

(

1− η2
)(

1 + ξ2 − η2
)

[

η2
(

1− η2
)

+
ξ2(1+ξ2)

1+
2

c
2
f(η,ξ)

]

a2

1+
2

c
2
f(η,ξ)

[

η2 (1− η2) + ξ2 (1 + ξ2)
]2

, (3.2)

g12 = g21 = −
ηξ

(

1− η2
) (

1 + ξ2
) (

1 + ξ2 − η2
)

a2

1+
2

c
2
f(η,ξ)

[

η2 (1− η2) + ξ2 (1 + ξ2)
]2

×

×

[

1−
(

1 +
2

c2
f(η, ξ)

)

−1
]

, (3.3)
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g22 = −

(

1 + ξ2
)(

1 + ξ2 − η2
)

[

ξ2
(

1 + ξ2
)

+
η2(1−η2)

1+
2

c
2
f(η,ξ)

]

a2

1+
2

c
2
f(η,ξ)

[

η2 (1− η2) + ξ2 (1 + ξ2)
]2

, (3.4)

g33 =
[

a2
(

1 + ξ2
) (

1− η2
)

]

−1

. (3.5)

The contravariant metric tensor has two additional non-zero compo-
nents not found in Schwarzschild field. Notice that unlike in Schwarz-
schild field; where all the non-zero components of the contravariant ten-
sor are simply reciprocals of the covariant metric tensor; only equations
(3.1) and (3.5) are reciprocals of their respective covariant tensors. The
other non-zero components have a common denominator. The coeffi-
cients of affine connection found have fourteen non zero components.,
dependent on a single unknown function f . Schwarzschild’s connection
coefficients on the other hand have ten non-zero components dependent
on the gravitational scalar potential exterior to the spherically symmet-
ric mass [20].

Using the general relativistic equation of motion for test particles
and the coefficients of affine connection for the gravitational field exte-
rior to an oblate spheroidal mass the following equations of motion are
obtained. The time equation of motion is obtained as

d

dτ
(ln ṫ) +

d

dτ

[

ln
(

1 +
2

c2
f(η, ξ)

)

]

= 0 (3.6)

with solution as

ṫ = A

(

1 +
2

c2
f(η, ξ)

)

−1

. (3.7)

As t → τ , f(η, ξ) → 0 and the constant A ≡ 1. Thus,

ṫ =

(

1 +
2

c2
f(η, ξ)

)

−1

. (3.8)

Equation (3.8) is the expression for the variation of the time on a
clock moving in this gravitational field. It is of same form as that in
Schwarzschild’s gravitational field. Interestingly, our expression differs
greatly from that obtained by [21]. In his case, he obtains ṫ as an
exponential function dependent on his unknown function F (ξ). Thus,
our expression in its merit stands out uniquely, as an extension of the
results in Schwarzschild’s field. Also, it tends out most remarkably
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that our unknown function can be evaluated from the gravitational field
equations.

The η equation of motion is

η̈ + Γ1
00 c

2 ṫ2 + Γ1
11 η̇

2 + Γ1
22 ξ̇

2 + Γ1
33 φ̇

2 + 2Γ1
12 η̇ ξ̇ = 0 . (3.9)

The ξ equation of motion is given as

ξ̈ + Γ1
00 c

2 ṫ2 + Γ1
11 η̇

2 + Γ1
22 ξ̇

2 + Γ1
33 φ̇

2 + 2Γ1
12 η̇ ξ̇ = 0 . (3.10)

The azimuthal equation of motion is obtained as

φ̇ =
l

(1− η2) (1 + ξ2)
, (3.11)

where l is a constant of motion. Herein l physically corresponds to the
angular momentum and hence equation (3.11) is the law of conservation
of angular momentum in this gravitational field. It does not depend
on the gravitational potential and is of same form as that obtained in
Schwarzschild’s and Newton’s dynamical theory of gravitation. It is
worth emphasizing that although the form is the same, it stands out
unique as the parameters are in oblate spheroidal coordinates.

§3.1.2. Planetary motion and motion of photons in the equa-

torial plane of homogeneous oblate spheroidal gravita-

tional fields

The Lagrangian, in the space-time exterior to an oblate spheroid can
be written explicitly in oblate spheroidal coordinates as

L =
1

c

[

− g00

(

dt

dτ

)2

− g11

(

dη

dτ

)2

− 2g12

(

dη

dτ

)(

dξ

dτ

)

−

− g22

(

dξ

dτ

)2

− g33

(

dφ

dτ

)2
]1/2

. (3.12)

For orbits in the equatorial plane of a homogeneous oblate spheroidal
mass; η ≡ 0 and using the Lagrangian it is shown (using the fact that
the gravitational field is a conservative field) that the law of conservation
of energy in the equatorial plane of the gravitational field exterior to an
oblate spheroidal mass is

(

1 +
2

c2
f(ξ)

)

ṫ = k , k̇ = 0 , (3.13)

where k is a constant. Notice that this equation is exactly the same as
the expression obtained from the time equation of motion for test part-
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icles. This expression has never been obtained before. Thus, our use
of the metric tensor and Lagrangian mechanics in oblate spheroidal
gravitational field yields the first ever documented expression for the
conservation of energy in this field [9].

Also, the law of conservation of angular momentum in the equatorial
plane of the gravitational field exterior to an oblate spheroidal body is
obtained as

(

1 + ξ2
)

φ̇ = l , l̇ = 0 , (3.14)

where l is a constant. It is interesting and instructive to note that this
expression is equivalent to that obtained from the general relativistic
azimuthal equation of motion for test particles in the gravitational field
exterior to an oblate spheroidal mass. Thus our method for obtaining
the laws of conservation of total energy and angular momentum in this
section is mathematically more convenient and physically more interest-
ing than the method in the previous section. Instead of going through
the rigorous tensor analysis to derive the affine connections before pro-
ceeding to derive the conservation laws; we simply need to build the
covariant metric tensor and use the generalized Lagrangian to deduce
the conservation laws.

Using the fact that the Lagrangian L= ǫ, with ǫ=1 for time like
orbits and ǫ=0 for null orbits the planetary equation of motion in this
gravitational field is

d2u

dφ2
− 3u

(

1 + u2
) du

dφ
+

u+ u2

2

(

u2 − u+ 2
)

×

×

(

1 +
2

c2
f(u)

)

=

(

1 + u2

acl

)2
(

a2c2u2 − 1− u2
) d

du
f(u) . (3.15)

It can be solved to obtain the perihelion precision of planetary orbits.
This is opened up for further research.

The photon equation of motion in the vicinity of a static massive
homogenous oblate spheroidal body is obtained as

d2u

dφ2
− 3u

(

1 + u2
) du

dφ
+

u+ u2

2

(

u2 − u+ 2
)

×

×

(

1 +
2

c2
f(u)

)

=
u2

c2

(

1 + u2
)2 d

du
f(u) . (3.16)

In the limit of special relativity, some terms in equation (3.16) vanish
and the equation becomes

d2u

dφ2
− 3u

(

1 + u2
) du

dφ
+

u+ u2

2

(

u2 − u+ 2
)

. (3.17)
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The solution of the special relativistic case, equation (3.17) can be
used to solve the general relativistic equation, (3.16). This can be done
by taking the general solution of equation (3.17) to be a perturbation
of the solution of equation (3.16). The immediate consequence of this
analysis is that it will produce a new expression for the total deflection
of light grazing a massive oblate spheroidal body such as the Sun. This
is also open for further research and astrophysical interpretations.

§3.1.3. Effects of oblateness of the Sun and planets on some

gravitational phenomena

Gravitational scalar potential along the pole and equator of

the homogeneous oblate spheroidal Sun and planets. The com-
puted numerical values of the constants ξ0 and a for the oblate spher-
oidal bodies in the Solar System are given in Table 2.

Equatorial Polar
Body radius x0 × 103 radius z0 × 103 ξ0 a, m

Sun 700,00 699,994 241.52 2.89829 × 106

Mercury 2,440 2,440 — —
Venus 6,052 6,052 — —
Earth 6,378 6,356 12.01 5.29226 × 105

Mars 3,396 3,376 09.17 3.68157 × 105

Jupiter 71,490 66,843 02.64 2.53193 × 107

Saturn 60,270 53,761 01.97 2.72899 × 107

Uranus 25,560 24,793 03.99 6.21378 × 106

Neptune 24,760 24,116 04.30 5.60837 × 106

Table 2: Computed constants ξ0 and a for the Sun and planets [10].

The gravitational scalar potential exterior to a homogeneous oblate
spheroid [4] is given as

f(η, ξ) = B0Q0(−iξ) +B2Q2(−iξ)P2(η) , (3.18)

where Q0 and Q2 are the Legendre functions linearly independent to the
Legendre polynomials P0 and P1 respectively. B0 and B2 are constants
with approximate expressions as

B0 ≈ i
4πGρ0a

2ξ50
3 (1 + ξ20)

, (3.19)

B2 ≈ i
4πGρ0a

2ξ50

3
[

44ξ20 + (1 + 3ξ20) (
2
0)
] . (3.20)
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The mean density ρ0 for various bodies in the universe is taken
according to the astronomical data. With the values of ξ0 and a in Ta-
ble 2, we get the values for the constantsB0 and B2 for the homogeneous
oblate spheroidal Sun and planets as in Table 3.

Mean density
Body ρ0, kg/m

3 i B0, Nm/kg i B2, Nm/kg

Sun 1409 4.67961 × 1013 8.91380 × 107

Mercury 5400 — —
Venus 5200 — —
Earth 5500 7.43766 × 108 1.70123 × 105

Mars 3900 1.13049 × 108 4.40357 × 105

Jupiter 1300 3.76352 × 109 1.50951 × 107

Saturn 690 8.76690 × 108 5.70607 × 106

Uranus 1300 8.41939 × 108 1.61800 × 106

Neptune 1600 1.06534 × 109 1.78225 × 106

Table 3: Values of the constants B0 and B2 for the Sun and Planets [17].

By considering the first two terms of the series expansion of the
Legendre functions, we can write

f(η, ξ) ≈
B0

3ξ3
(

1 + 3ξ2
)

i+
B2

30ξ3
(

7 + 15ξ2
)

i , (3.21)

f(η, ξ) ≈
B0

3ξ3
(

1 + 3ξ2
)

i−
B2

30ξ3
(

7 + 15ξ2
)

i , (3.22)

as the respective expressions for the gravitational scalar potential along
the equator and pole exterior to homogeneous oblate spheroidal bod-
ies. Now, with the computation of the constant ξ0 for the homogeneous
oblate spheroidal Sun and planets, we can now evaluate the scalar poten-
tial along the equator and the pole at various points (multiples of ξ0)
exterior to the Sun and planets. The detailed results are presented
in [10]. Our computations agree satisfactorily with the experimental
fact that the Gravitational Scalar Potential exterior to any regularly
shaped object has maximum magnitude on the surface of the body and
decreases to zero at infinity.

The consequence of the results obtained above is that the exact shape
of the planets and Sun was used to obtain the gravitational scalar po-
tential on the surface at the pole and equator. Thus, instead of using
the values obtained by considering the Sun and planets as homogeneous
spheres, our experimentally convenient values obtained can now be used.
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The door is now open for the computation of values for various gravita-
tional phenomena exterior to the static homogeneous oblate spheroidal
Sun and planets along the equator and pole. Some of these phenomena
include gravitational length contraction and time dilation.

Gravitational time dilation in fields exterior to static oblate

spheroidal distributions of mass. Consider a clock at rest at a fixed
point (η, ξ, φ) in the gravitational field exterior to an oblate spheroidal
mass, the world line element for this gravitational field reduces to

dt =

(

1 +
2

c2
f(η, ξ)

)1/2

dτ . (3.23)

Expanding the right hand side gives

dt =

(

1 +
2

c2
f(η, ξ) + . . .

)1/2

dτ . (3.24)

We obtain that dt>dτ (dilation). Thus, coordinate time of a clock
in this gravitational field is dilated relative to proper time.

As an illustration, consider two events at fixed points exterior to the
homogenous oblate spheroidal Earth along the equator, separated in this
gravitational field by coordinate time dt and proper time dτ . Substitut-
ing the values for the gravitational scalar potential into the equation for
gravitational time dilation (3.24), (approximate fields) yields the results
presented in Table 4.

Thus, we conclude that clock runs more slowly at a smaller dis-
tance from the massive oblate spheroidal body. In other words, clocks
will run slower at lower gravitational potentials (deeper within a grav-
ity well). This was first confirmed experimentally in the laboratory by
the Hafele-Keating experiment [22]. Today, there are numerous direct
measurements of gravitational time dilation using atomic clocks [23],
while ongoing validation is provided as a side-effect of the operation of
Global Positioning System (GPS). One important experiment that was
conducted to support Einstein’s principle of time dilation was the ex-
periment by Rossi and Hall in 1941 and repeated recently in accelerator
rings. In this experiment, muons travelling with a velocity close to the
velocity of light are observed to survive longer than muons that travel
with velocities that are much less than that of light. Also, in 1976, the
Smithsonian Astrophysical Observatory sent aloft a Scout rocket to an
altitude of 10,000 km. This expedition also confirmed gravitational time
dilation.
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Fixed point along Radial distance along dt as a factor
the Equator the Equator, km of dτ

ξ0 6,378 1.306170
2 ξ0 12,723 1.122655
3 ξ0 19,075 1.076871
4 ξ0 25,430 1.055996
5 ξ0 31,784 1.044042
6 ξ0 38,140 1.036296
7 ξ0 44,495 1.030867
8 ξ0 50,851 1.026852
9 ξ0 57,207 1.023761

10 ξ0 63,562 1.021308

Table 4: Coordinate time at fixed points along the equator in the gravitational
field exterior to the Earth as a factor of proper time [11].

Gravitational length contraction in fields exterior to oblate

spheroidal distributions of mass. Here, the space part of the world
line element in the gravitational field exterior to an oblate spheroidal
mass is used with the angular coordinates kept constant. This gives us
an expression for gravitational length contraction in this field as

ds =





a2

1 + ξ2 − η





ξ2

1 + 2
c2
f(η, ξ)

+
η2

(

1− η2
)

(1 + ξ2)









1/2

dξ . (3.25)

Along the equatorial line, η = 0 and equation becomes

ds = a ξ
(

1 + ξ2
)−1/2

(

1 +
2

c2
f(η, ξ)

)

−1/2

dξ . (3.26)

It can be shown that ds > dξ from equation (3.26). In other words,
the coordinate distance separating these two points is contracted in this
gravitational field. Thus, we can write

dξ = (a ξ)−1
(

1 + ξ2
)1/2

(

1 +
2

c2
f(η, ξ)

)1/2

ds (3.27)

as our expression for gravitational length contraction along the equator
in this gravitational field.

As an illustration of this gravitational phenomenon, we can consider
a long stick lying radially along the equator in the approximate gravita-
tional field of a static homogeneous oblate spheroidal mass such as the
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Earth. Let the ξ-coordinates of the ends be ξ1 and ξ2, where ξ2 > ξ1.
Then the formula for its proper length will be as that found in [11].

Gravitational spectral shift in gravitational fields exterior to

oblate spheroidal distributions of mass or pressure Here, we
consider a beam of light moving from a source or emitter at a fixed point
in the gravitational field of the oblate spheroidal body to an observer
or receiver at a fixed point in the same gravitational field. Einstein’s
equation of motion for a photon is used to derive an expression for the
shift in frequency of a photon moving in the gravitational field of an
oblate spheroidal mass as.

Now, consider a beam of light moving from a source or emitter (E)
at a fixed point in the gravitational field of an oblate spheroidal body
to an observer or receiver (R) at a fixed point in the field. Let the
space-time coordinates of the emitter and receiver be tE, ηE, ξE, φE and
tR, ηR, ξR, φR respectively. It is a well known fact that light moves along
a null geodesic given by

dτ = 0 . (3.28)

Thus, the world line element for a photon (light) takes the form

c2 g00dt
2 = g11dη

2 + 2g12dηdξ + g22dξ
2 + g33dφ

2. (3.29)

Substituting the covariant metric tensor for this gravitational field
and let u be a suitable parameter that can be used to study the motion
of a photon in this gravitational field then equation (3.29) can be written
as

dt

du
=

1

c

(

1 +
2

c2
f(η, ξ)

)

−1/2

ds , (3.30)

where ds is defined as

ds2 = −
a2

1 + ξ2 − η2

[

η2
(

1 +
2

c2
f(η, ξ)

)

−1

+
ξ2

(

1 + ξ2
)

(1− η2)

]

(

dη

du

)2

−

−
2a2ηξ

1 + ξ2 − η2

[

1−

(

1 +
2

c2
f(η, ξ)

)

−1
]

dη

du

dξ

du
−

− a2
(

1 + ξ2
)(

1− η2
)

(

dφ

du

)2

−

−
a2

1 + ξ2 − η2

[

ξ2
(

1 +
2

c2
f(η, ξ)

)

−1

+
η2

(

1 + η2
)

(1− ξ2)

]

(

dξ

du

)2

. (3.31)
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Integrating equation (3.30) for a signal of light moving from emitter
to receiver gives

tR − tE =
1

c

∫ uR

uE

[

(

1 +
2

c2
f(η, ξ)

)

−1/2

ds

]

du . (3.32)

The time interval between emission and reception of all light signals
is well known to be the same for all light signals in relativistic mechanics
(constancy of the speed of light) and thus the integral on the right
hand side is the same for all light signals. Consider two light signals
designated 1 and 2 then

∆tR = ∆tE . (3.33)

Hence, coordinate time difference of two signals at the point of emis-
sion equals that at the point of reception. From our expression for
gravitational time dilation in this gravitational field, we can write

∆τR =

(

1 +
2

c2
f(η, ξ)

)1/2

∆tR (3.34)

Hence

∆τR

∆τE
=





1 + 2
c2
fR(η, ξ)

1 + 2
c2
fE(η, ξ)





1/2

. (3.35)

Now, consider the emission of a peak or crest of light wave as one
event. Let n be the number of peaks emitted in a proper time inter-
val ∆τE, then, by definition, the frequency of the light relative to the
emitter, νE, is given as

νE =
n

∆τE
. (3.36)

Similarly, since the number of cycles is invariant, the frequency of
light relative to the receiver, νR, is given as

νR =
n

∆τR
. (3.37)

Consequently,

νR

νE

=
∆τE

∆τR
=





1 + 2
c2
fE(η, ξ)

1 + 2

c2
fR(η, ξ)





1/2

. (3.38)

The expressions on the right hand side of equation (3.38) are con-
verging and can be expanded binomially in approximate gravitational
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fields. This gives

z ≡
∆ν

νE

≡
νR − νE

νE

≈
1

c2

(

fE (η, ξ)− fR (η, ξ)
)

(3.39)

to the order of c−2. It follows from equation (3.39) that if the source is
nearer the body than the receiver then fE (η, ξ) − fR (η, ξ) and hence
∆ν < 0. This indicates that there is a reduction in the frequency of
light when the source or emitter is nearer the body than the receiver.
The light is said to have undergone a red shift (that is the light moves
towards red in the visible spectrum). Otherwise (source further away
from body than receiver), the light undergoes a blue shift.

This was experimentally confirmed in the laboratory by the Pound-
Rebka experiment in 1959 [24] (they used the Mossbauer effect to mea-
sure the change in frequency in gamma rays as they travelled from the
ground to the top of Jefferson Labs at Havard University). The ef-
fect of a gravitational potential difference on the apparent energy of the
14.4 keV gamma ray of Fe57 was found by Pound and Rebka [25] to agree
within uncertainties, with Einstein’s prediction based on his principle
of equivalence (General Relativity). Pound and Rebka in 1964 [26] im-
proved on their earlier results confirming Einstein’s prediction to greater
precision. The resonance of the 14.4 keV Fe57 gamma ray between Iron
foils was still employed. The same height as in the earlier experiment in
the Jefferson Physical Laboratory (22.5 m) was also used. This gravita-
tional phenomenon was later confirmed by astronomical observations.

Now, suppose the Pound-Rebka experiment was performed at the
surface of the Earth on the equator. Then, since the gamma ray fre-
quency shift was observed at a height of 22.5 m above the surface, we
model our theoretical computation and calculate the theoretical value
for this shift.

Recall that at the surface of the Earth, on the equator, we have
x0 = 6378000 m. Numerical values of a and ξ0 are defined as in Ta-
ble 2. The value of x at a height of 22.5 m above the surface is trivially
x0 + 22.5 = 6378022.5 m. Using the value of a for the Earth from
Table 2 it is shown that ξ at the point is 12.0100447. For spectral
shift of light emitted at the surface and received 22.5 m above the sur-
face of the Earth, along the equator, equation (3.39) holds in approx-
imate gravitational fields. In this case, fE =−6.2079113×107 Nm/kg;
this is the gravitational scalar potential on the surface of the Earth
on the equator. At the reception point, we use the value of ξ and
compute fR =−6.207888×107 Nm/kg. Thus, substituting the values
of fE, fR and c into equation (3.39) yields the shift in frequency as
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z ≃ 2.578×10−15. This value is quite close to that obtained by Pound
and Rebka (z ≃ 2.45×10−15) in 1964. The closeness of our theoret-
ically computed value for the Pound-Rebka experiment is remarkable
indeed. The difference can be accounted for by the slight discrepancy
between theory and experiment. Approximations made to the gravita-
tional scalar potential are also a possible contributing factor.

We can now conveniently predict the gravitational spectral shift for
Pound-Rebka experiment, if it was performed along the equator of the
Sun and oblate spheroidal planets. As in the case of the Earth, it can
be shown that the predicted shift in frequency is as shown in Table 5.

Body Distance ξ fR Predicted shift
km Nm/kg

Sun 700,022.5 241.527 −1.9373218 × 1011 −2.85889 × 10−21

Mars 3418.5 9.231 −1.2317966 × 107 −9.24256 × 10−20

Jupiter 71512.5 1.971 −1.4958977 × 109 −1.010111 × 10−20

Saturn 60292.5 1.971 −4.8484869 × 108 −1.902222 × 10−20

Uranus 25582.5 3.994 −2.1522082 × 108 −4.647889 × 10−20

Neptune 24782.5 4.304 −2.5196722 × 108 −5.168667 × 10−20

Table 5: Predicted Pound-Rebka shift in frequency for the Sun and other
oblate spheroidal planets.

With these predictions, astrophysicists and astronomers can now
attempt carrying out similar experiments on these planets. Although,
the prospects of carrying out such experiments on the surface of some of
the planets and Sun are less likely (due to temperatures on their surfaces
and other factors); theoretical studies of this type helps us to understand
the behavior of photons as they leave or approach these astrophysical
bodies. This will thus aid in the development of future astronomical
instruments that can be used to study these heavenly bodies.

Also, our expression for gravitational time dilation and spectral shift
can be used in place of those obtained from Schwarzschild’s field in the
expression of relativistic effects in the GRACE satellites. The GRACE
mission consists of two identical satellites orbiting the Earth at an alti-
tude of about 500 km. Dual-frequency carrier-phase GPS receivers are
flying on both satellites. They are used for precise orbit determination
and to time-tag the K-band ranging systems used to measure changes in
the distance between the two satellites. Kristine et al. [27] developed an
expression for the relativistic effects of low Earth orbiters (the GRACE
satellites). Their expression can be re-modified by considering our de-
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rived expressions in this work. This will improve on the accuracy of
GRACE data.

§3.2. General relativistic mechanics in homogeneous prolate

spheroidal gravitational fields

§3.2.1. Gravitational field equations exterior to a homoge-

neous prolate spheroidal mass

The generalized covariant metric tensor exterior to static homogeneous
prolate spheroidal distributions of mass or pressure is given as equations
(2.29) to (2.33). The contravariant metric tensor for this gravitational
field gµν can be obtained with the aid of the tensor equations (2.34)
and (2.35). The contravariant metric tensor has two additional non-
zero components not found in Schwarzschild field.

The coefficients of affine connection for the gravitational field exte-
rior to a static homogeneous prolate spheroidal mass can be found. The
curvature tensor for this gravitational field has twenty four non-zero
components.

The Ricci tensor for this gravitational field can thus be composed in
terms of the curvature tensor and the curvature scalar, R, can also be
obtained. The general relativistic field equations for a region exterior
to any astrophysical body are given as

R00 −
1

2
Rg00 = 0 , (3.40)

R11 −
1

2
Rg11 = 0 , (3.41)

R12 −
1

2
Rg12 = 0 , (3.42)

R22 −
1

2
Rg22 = 0 , (3.43)

R33 −
1

2
Rg33 = 0 . (3.44)

The gravitational field equations derived are second order partial
differential equations that can be solved and interpreted. All its mathe-
matically possible solutions may then be distinguished by physical con-
siderations, such as consistency with astrophysical or astronomical ob-
servations, data and facts. Hence, in principle, our arbitrary function,
f(η, ξ), which uniquely and completely determines the solution of Ein-
stein’s gravitational metric tensor field exterior to the static homoge-
neous prolate spheroidal mass or pressure distributions can be found.
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It is interesting to note that the number of distinct non-zero com-
ponents of the Ricci tensor is five. The number of distinct non-zero
components of the Ricci tensor is always the same, no matter the na-
ture of the mass distribution within prolate spheroidal regions. This
number corresponds to the number of distinct non-zero components of
the metric tensor in this field. It is also equal to the number of distinct
field equations possible in the gravitational field.

Thus, generally, in prolate spheroidal fields, the rigorous field equa-
tions are nonlinear differential equations. The Schwarzschild’s solution
is a rigorous solution of Einstein’s field equations and we have succeeded
to extend his results to fields exterior to prolate spheroidal masses.
Schwarzschild’s solution is significant because it is the only solution of
the field equations in empty space which is static, which has spherical
symmetry, and which goes over into the flat metric at infinity [1]. Also,
in fields exterior to static homogenous prolate spheroidal masses (with
the approximate expression for our arbitrary function given as Newton’s
gravitational scalar potential exterior to the body), the metric reduces
conveniently to the flat space metric for prolate spheroidal masses at
infinity (since the gravitational potential reduces to zero at infinity).

§3.2.2. Solutions to gravitational field equations exterior to

homogeneous prolate spheroidal masses

It can be shown trivially that no two of these five Einstein field equations
possess a common simultaneous solution. Consequently these equations
may only be solved separately and their different solutions applied when-
ever and wherever necessary and useful in physical theories.

It is also obvious that in the case of the static homogenous distri-
bution of mass within a prolate spheroidal region in this research work,
all the five nontrivial Einstein field equations possess their own differ-
ent solutions which may be applied whenever and wherever useful in
physical theory.

In this section, we construct the solution for the first field equation,
equation (3.40). Writing the various terms of the field equation (3.40)
explicitly in terms of the metric tensor and simplifying by grouping
yields a more explicit expression of the field equation with only terms
of order c−2 as

K1 (η, ξ) fηη +K2 (η, ξ) fη ξ +K3 (η, ξ) fξξ +

+K4 (η, ξ) fη +K5 (η, ξ) fξ +K6 (η, ξ) f = 0 , (3.45)

where the coefficients Ki (i=1, . . . , 6) are functions of ξ and η only.
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Equation (3.45) is thus our simplified exterior field equation to the
order of c−2 for homogeneous prolate spheroidal gravitational fields.
We can now conveniently seek to construct the astrophysically most
satisfactory solutions of equation (3.45) which are convergent in the
exterior space-time:

ξ > ξ0 and − 1 6 η 6 1 . (3.46)

Let us now seek the solution f , of our field equation (3.45) in the
form of a power series

f (η, ξ) =
∞
∑

n=1

Rn (ξ) η
n, (3.47)

where Rn is a function to be determined for each value of n = 0, 1, 2, . . .
Substituting equation (3.47) into (3.45) and using the fact that {ηn}∞n=0

is a linearly independent set, we can equate the coefficients of ηn on both
sides and hence obtain the equations satisfied by the functions Rn. From
the coefficients of η0 we obtain the equation

ξ2
(

ξ2 − 1
)

R
′

1 (ξ) + 2
(

ξ2 − 1
) (

ξ3 − ξ − 2
)

R1 (ξ) +
(

ξ2 − 1
)2

×

×
(

4ξ3 + 2ξ2 + ξ − 1
)

R′

0 (ξ) +
[

4
(

2 + ξ2
)

+ 8ξ8
(

ξ2 − 1
)

+

+ 2
(

ξ2 − 1
)2 (

2ξ4 − 2ξ8 − 4ξ3 − 1
)

]

R0 (ξ) = 0 . (3.48)

Equation (3.48) is the first recurrence differential equation for the
unknown functions Rn. Similarly all the other recurrence differential
equations follow. There are infinitely many of the recurrence differential
equations to determine all the unknown functions.

Firstly, it is most interesting and instructive to note that according
to the first recurrence differential equation (3.48), the unknown func-
tions R0 and R1 are actually arbitrary. Therefore we have the freedom
to choose them to satisfy the physical requirements or needs of any
particular distribution or area of application. Thus, we realize that
they can be chosen in such a way that there are generalizations of the
gravitational scalar potential exterior to the mass distribution.

Secondly, we note that the first recurrence differential equation
(3.48) determines the unknown function R1 in terms of R0. Similarly,
the other recurrence differential equations will determine all the other
unknown functions R2, . . . , in terms of R0. Hence we obtain the general
exterior solution of equation (3.45) in terms of R0. This is our math-
ematically most simple and astrophysically most satisfactory general
exterior solution of order c−2.



Ebenezer Ndikilar Chifu 63

§3.2.3. Motion of particles of non-zero rest masses exterior to

static homogeneous prolate spheroidal space-time

The time equation of motion is obtained as

d

dτ

(

ln ṫ
)

+
d

dτ

[

ln

(

1 +
2

c2
f (η, ξ)

)]

= 0 (3.49)

with solution

ṫ =

(

1 +
2

c2
f (η, ξ)

)

−1

. (3.50)

Equation (3.50) is the expression for the variation of the time on a
clock moving in this gravitational field. It is of same form as that ob-
tained in the oblate spheroidal gravitational field and in Schwarzschild’s
field The η-equation and ξ-equation of motion are

η̇ + Γ1
00 c

2 ṫ2 + Γ1
11 η̇

2 + Γ1
22 ξ̇

2 + Γ1
33 φ̇

2 + 2Γ1
12 η̇ ξ̇ = 0 , (3.51)

ξ̈ + Γ2
00 c

2 ṫ2 + Γ2
11 η̇

2 + Γ2
22 ξ̇

2 + Γ2
33 φ̇

2 + 2Γ2
12 η̇ ξ̇ = 0 . (3.52)

For azimuthal motion,

d

dτ

(

ln φ̇
)

+
d

dτ

[

ln
(

η2 − 1
) (

1− ξ2
)

]

= 0 , (3.53)

with solution

φ̇ =
l

(η2 − 1) (1− ξ2)
, (3.54)

where l is a constant of motion. Herein l physically corresponds to the
angular momentum. This is the law of conservation of angular momen-
tum in this gravitational field. It has the same form as that obtained
in the oblate spheroidal gravitational field and does not depend on the
gravitational potential. Therefore, it is of same form as that obtained
in Schwarzschild’s and Newton’s dynamical theory of gravitation. The
significance of these results is that the law of conservation of angu-
lar momentum takes the same form in the three different gravitational
fields and thus the expression for this law of mechanics is invariant with
respect to the three gravitational fields.

§3.2.4. Orbits in homogeneous prolate spheroidal space-time

The Lagrangian in the space-time exterior to a prolate spheroid is used
to obtain

d2u

dφ2
−

2u

1 + u2

du

dφ
+

(

1 + u2

acl

)2
df

du
= 0 (3.55)
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as the planetary equation of motion and

d2u

dφ2
−

2u

1 + u2

du

dφ
= 0 (3.56)

as the photon equation of motion in the vicinity of a static massive
homogenous prolate spheroidal body.

Conclusion

The practicability of the findings in this work is an encouraging factor.
More so, that in this age of computational precision, the applications
of these results is another factor. This work exposes the philosophical
and theoretical successes/failures of General Relativity theory to the
advancement of studies in gravitation. The astrophysical applications
of our extension abound as all applications of Schwarzschild’s metric
in studying gravitational phenomena in the Solar System can now be
studied using our new approach.

With the formulation of our mathematically most simple and astro-
physically most satisfactory solutions to Einstein’s gravitational field
equations the way is opened for the solution of the general relativistic
equations of motion for all test particles in the gravitational fields of
all static homogeneous distributions of mass within prolate spheroidal
regions in the universe. And precisely because these equations contain
the pure Newtonian as well as post-Newtonian gravitational scalar po-
tentials all their predictions shall be most naturally comparable to the
corresponding predictions from the pure Newtonian theory. This is most
satisfactory indeed.

It is now obvious how our work may be emulated to

1) Derive a mathematically most simple structure for all the metric
tensors in the space-times exterior or interior to any distribution
of mass within any region having any of the geometries in nature,

2) Formulate all the nontrivial Einstein geometrical gravitational
field equations and derive all their general solutions, and

3) Derive astrophysically most satisfactory unique solutions for ap-
plication to the motions of all test particles and comparison with
corresponding pure Newtonian results and applications. Therefore
our goal in this research work has been completely achieved: to
use the case of a spheroidal distribution of mass to show how the
much vaunted Einstein’s geometrical gravitational field equations
may be solved exactly and analytically for any given distribution
of mass within any region having any geometry.



Ebenezer Ndikilar Chifu 65

On a final note, the theme studied in this research work is obvi-
ously very attractive as it is related to the expansion of our views to
boundaries far away from our everyday experience, and opens beau-
tiful horizons for possible laboratory, astrophysical and astronomical
experiments. Naturally, Einstein’s equations are of great importance to
mankind, even if most people don’t understand it clearly. By connect-
ing the geometrical properties of space with the physical properties of
matter, the equations regulate almost all of the space-time functions of
our life. We are living in not just a mere three dimensional space, but
in time that is manifested as the change of all physical structures (even
the most stable physical structures change). The change of geometric
formations changes the coordinate nets and hence, changes the geomet-
rical structure of the space we observe. Einstein’s equations rule this
process. We are very optimistic that in the future, when people will fail
to use oil as the source of energy, Einstein’s equations will be the main
engine for a theoretical physicist working on the sources of energy or
related problems. People will turn their attention to more obvious and
bizarre energetics than simply using oil or other fuels. As researchers in
gravitational physics, we see many excellent sources of energy around
us. These are the planets orbiting the Sun, rotating stars, stellar en-
ergy and many others. These sources are working from other principles
than those known to modern theoretical physics. But these sources are
not obvious as the self-rotating Sun (it should come to a halt after 2.5
revolutions due to internal viscosity) or the planets orbiting it (they
also should experience a halt). The energy propelling these systems can
be best understood from the space-time geometry and thus Einstein’s
theory of gravitation has a very promising future.
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