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Abstract: This paper presents a compelling argument for the phys-
ical light speed in the homogeneous and isotropic Friedman-Lemâıtre-
Robertson-Walker (FLRW) universe to vary with the cosmic time co-
ordinate t of FLRW. It will be variable when the radial co-moving
differential coordinate of FLRW is interpreted as physical and there-
fore transformable by a Lorentz transform locally to differentials of
stationary physical coordinates. Because the FLRW differential radial
distance has a time varying coefficient a(t), in the limit of a zero radial
distance the light speed c (t) becomes time varying, proportional to
the square root of the derivative of a(t). Since we assume homogeneity
of space, this derived c (t) is the physical light speed for all events in
the FLRW universe. This impacts the interpretation of astronomical
observations of distant phenomena that are sensitive to light speed.
In particular, it will modify the dark energy used to explain the ap-
parent universe acceleration. A transform from FLRW is shown to
have a physical radius out to all radial events in the visible universe.
This shows a finite horizon beyond which there are no galaxies and
no space. The General Relativity (GR) field equation to determine
a(t) and c (t) is maintained by using a variable gravitational constant
and rest mass that keeps constant the gravitational and particle rest
energies. This keeps constant the proportionality constant between
the GR tensors of the field equation and conserves the stress-energy
tensor of the ideal fluid used in the FLRW GR field equation. In the
same way all of Special and General Relativity can be extended to
include a variable light speed.
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§1. Introduction. Here I will use a significantly different approach
than other attempts in the literature to investigate a variable speed of
light. Those mostly tried to find a new cosmology to provide alterna-
tives to inflation in order to resolve horizon and flatness problems [1–5].
In common with those approaches, the present approach is a major de-
parture from the prevailing paradigm that the speed of light is constant.
However, my calculation of a variable light speed c(t) seems to be con-
sistent with being interpreted as physical in the FLRW universe, but
is a variable function of the chronometrically invariant observable con-
stant light speed c, dependent on the specific conditions in this universe
compared with the more general universes treated by A. Zelmanov [6].

I derive a variable light speed using the same assumptions used for
almost a century, except that I allow for a variable light speed: 1) that
light speed (even though variable) is independent of the velocity of the
observers, 2) that the universe is homogeneous and isotropic, and 3) that
the radial FLRW differential variables derivable for this universe repre-
sent physical time and distance. The first assumption leads to a Lorentz
transform between moving observers, extended to allow a variable light
speed; the second leads to the FLRW metric [7–9] that allows for a vari-
able light speed; and the third allows us to locally apply the extended
Lorentz transform from the FLRW time dt and radial distance a(t)dχ
to the stationary time dT and distance dR. We show that this requires
a variable physical light speed to be

c(t) ∝

√
da

dt

in order to be consistent with the time varying distance differential of
FLRW. This is done by expanding the physical time and distance along
a stationary rod in a power series of the FLRW co-moving coordinate
χ and extrapolating to zero χ. We assume (fourth assumption) that
the Lorentz transform remains valid from the origin out to at least the
lowest power χ and therefore the lowest power of the velocity between
the two frames. This derivation is fairly simple and covers only the
first 8 pages of this paper. The remainder of the paper addresses the
reasonableness and implications of this derivation.

We find two different systems of full radially transformed coordinates
from FLRW, good for all distances, whose differentials close to the origin
have a Minkowski metric. These transforms all have the same variable
light speed at the origin as the power series expansion, a universality
that I find persuasive.

For a homogeneous universe, since the origin can be placed on any



Robert C. Fletcher 185

galactic point, this means that this variable physical light speed enters
all our physical laws throughout the universe. In particular it is possible
that standard candles like the supernovae Ia [10–13] and galactic clusters
[15] are dimmed by the right amount by higher light speeds to provide
an alternate to dark energy to explain the apparent acceleration of the
universe.

To maintain unchanged the field equation of General Relativity, we
assume the gravitational “constant” G to be time varying, but keep
constant the proportionality function between the GR tensors of the
field equation. This is done by assuming the particle rest energy and
the Newton gravitational energy to be constant. This also conserves the
stress-energy tensor of an ideal fluid used in the GR field equation for
an FLRW universe.

We can express the gravitational field in transformed stationary co-
ordinates using Riemannian geometry. In the region near the origin for
a flat universe this field increases linearly with distance just like the
Newtonian field for a spherical distribution of uniform mass density.

A surprise bonus from this endeavor is that one of the radial trans-
forms has a physical distance to all parts of the universe. Even though
three rigid accelerated axes are inadequate to describe three-dimensional
motion, it is apparently possible to find one rigid axis to measure ra-
dial distance, at least for a homogeneous FLRW universe, although the
transformed time on this axis becomes non-physical at large distances.
This shows that in the coordinates of the rigid frame attached to the
origin that the universe is contained within an expanding spherical shell
outside of which there are no galactic points and no space.

I also outline in the Appendix how not only the Lorentz transform,
but all of the vectors and tensors of Special Relativity can be extended
to include a variable light speed so they can be used in the standard
field equation of General Relativity.

§2. The derivation of c(t)

§2.1. Assumptions. Only four assumptions are needed for the deri-
vation of c(t). The first three are the same assumptions for Special
Relativity and for the universe that have been made for almost a century.
What is new is the allowance for the possibility that the physical light
speed is variable. We will use “line element” to describe the invariant
ds and “metric” to describe the particular differential coordinates that
equal ds. We will be considering only radial motion in a spherically
symmetric universe.
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Assumption I. The physical light speed is the same for all co-located
observers who may be moving at various velocities in an acceler-
ating field.

From this we can derive the extended Lorentz transform (L̂) be-
tween such observers, even when the light speed and velocities are vari-
able (Appendix C.2). Each observer will have an extended Minkowski
metric (M̂).

Assumption II. The universe is isotropic and homogeneous in space.

From this we can derive an extended FLRW metric (Appendix C.7)
that allows for a variable light speed c(t), where t is the physical time
on the co-moving galactic points of the FLRW solution. This derivation
depends only on the assumed symmetry and not on the general rela-
tivistic field equation. χ is a co-moving radial coordinate with which a
galactic point (representing a galaxy) stays constant. a(t) is a universe
scale factor that multiplies dχ in the metric.

Definition: “Physical” coordinates in time or distance over some in-
terval will be defined as those that have a linear relationship to
the readings on a co-located standard clock or a standard ruler,
respectively. We call them physical because it describes coordi-
nates on the rigid frame for an observer at the origin χ = 0. In
principle if a standard clock or ruler were at the location indicated
by the physical coordinate, the coordinate would be observable.
In the limit of small intervals on an inertial frame, if physical time
represents clocks at the location represented by the physical dis-
tance, according to General Relativity, their differentials will have
an M̂ metric (see Appendix C). Physical velocity is the ratio of
the differential physical distance to the differential physical time,
when both are located at the same space point.

Assumption III. The FLRW time and radial differentials dt and
a(t)dχ are physical.

This is a usual assumption. It is reasonable since the radial motion
of the FLRW metric is M̂ in these differentials. With this assumption
the radial physical light speed is a(∂χ

∂t )s, and the physical radial velocity
V of a moving object, labeled R, located at t, χ is a(∂χ

∂t )R.

Definition: We will use AP (almost physical) to describe spherically
symmetric coordinate systems xμ(R, θ, φ, T ) that are transforms
from the FLRW coordinates with a radial metric that approaches
M̂ as χ approaches zero. We will attach the AP space origin to the
same galactic point as χ =0, so at this point there is no motion
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between them. Thus we can call the AP coordinates stationary.
Since their differentials have a M̂ metric close to the origin, they
can be L̂ transformed from the physical coordinates dt and a(t)dχ.
For a point on R, they will have contravariant vectors for velocity
Uμ = dxμ

ds and acceleration Aμ = DUμ

ds , whose components trans-
form like the coordinate differentials. R is rigid in a mathematical
sense because the radial component of Uμ in stationary coordi-
nates is ( ∂R

∂T )R(dT
ds )≡ 0, so the points of R are motionless with

respect to each other. (It is rigid in its mathematical properties,
but not in its acoustical properties). It will be helpful in finding
AP transforms if we further require the AP metric be diagonal
(zero coefficient of dTdR).

Definition: We define a generalized Hubble ratio as H(t̂)= ȧ
a , where

the dot is the dt̂ = c(t)dt derivative, see formula (196).

Assumption IV. The Lorentz transform between FLRW and AP ra-
dial coordinates is valid for the partial differentials of T and R
from the origin out to at least the lowest power of the velocity
between them.

Without this substantial assumption, a constant light speed would
be allowed [17].

With these assumptions and definitions, we will show that the light

speed is variable and proportional to ȧ = aH (or equivalently to
√

da
dt )

by two different procedures:

1) Integrate L̂ transformed physical differentials dT, dR in a power
series in χ (see §2.2);

2) Find full rigid diagonal radial AP transforms T,R for all t, χ
(see §2.3).

Each of these has the same variable light speed c(t) in the limit
of χ → 0. The first shows this for any and all AP transforms for an
expansion of Tt that is internally consistent to the second power of χ
as required for Lorentz to be applicable. The second shows this for a
large number of full radial AP transforms which have an M̂ metric close
to the origin. Thus, the first is a completeness proof that if there are
such transforms, they must have this c(t), and the second is an existence
proof that there are such transforms with c(t) at the origin, and that the
expansion of the first is further justified for being internally consistent
to the second power of χ.

Additional assumptions are needed to apply this variable physical
light speed to physical laws. We will use the following:
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Assumption V. We assume the Bernal criteria [16] that two observers
will be using the same units of measure when each measures the
other’s differential units at the same space-time point compared
to their own and finds these cross measurements to be equal.

We will find a radial AP transform (T,R) called physical distance
coordinates whose differential dR is physical for all distances by virtue
of this assumption (see §2.3 and Appendix A.2).

Assumption VI. We assume that the Einstein field equations can be
maintained unchanged for c(t) by assuming a gravitation “con-
stant” that varies as c(t)4. This keeps constant the proportional-
ity function between the GR field tensors, see formula (176).

The effect of c(t) is introduced by an extended metric and an ex-
tended conserved stress-energy tensor (Appendix C.5). The extended
FLRW metric solves the extended GR field equation for an ideal fluid.
A well-behaved transform will also be a solution since Riemann tensors
are invariant to transforms. The solution allows us to calculate a(t) and
c(t) and galactic and photon paths on the AP frame for a homogeneous
and isotropic universe with a variable light speed (see §3 and §4).

Assumption VII. We assume that the molecular spectra of particles
are constant.

Thus, we keep constant the fine structure constant and Rydberg
frequency by making the vacuum electric and magnetic ‘constants’ vary
inversely with c(t). This also allows us to redefine electro-magnetic field
vectors to maintain Maxwell’s equations (Appendix C.6).

§2.2. Variable light speed c(t) required for a transform that
is Lorentz close to the origin.

§2.2.1. Extended Lorentz transform from galactic points to
the stationary inertial frame using the velocity V between
them. We will consider only radial world lines with physical coordi-
nates T and R on the AP inertial frame. We would like these to describe
the same events as the FLRW coordinates t and χ (Appendix C.7), so
T = T (t, χ) and R = R(t, χ) with R =0 at χ =0. So

dT = Tt dt + Tχ dχ =
1
c

Tt dt̂ + Tχdχ

dR = Rt dt + Rχ dχ =
1
c

Rt dt̂ + Rχdχ





, (1)

where the subscripts indicate partial derivatives with respect to the sub-
script variable, and where we use dt̂ = c(t)dt (see Appendix C). We will
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find T = T (t, χ) and R = R(t, χ) by integrating the differentials of the
Lorentz transform for a short distance. We assume the M̂ metric applies
to physical differential times and distances of limited size anywhere and
anytime. The FLRW metric in (194) has a radial Minkowski-like metric
with dT ∗ → dt and dR∗ → adχ that we have assumed are physical. If
a point on the AP frame is moving at a radial velocity V (t, χ) when
measured with the FLRW coordinates, the L̂ transform of dt, adx to
dT, dR for a radial path keeps the line element ds invariant (154):

dT = γ(t, χ)

(

dt −
V (t, χ)
c(t)2

a(t)dχ

)

dR = γ(t, χ)
(
−V (t, χ)dt + a(t)dχ

)





. (2)

If we compare (2) with (1), we get

Tt = γ , (3)

Tχ = −γa
V

c2
= −γaV̂ c , (4)

Rt = −γV = −γ cV̂ , (5)

Rχ = γa , (6)

where for simplification we have introduced V̂ ≡ V
c . These relations are

exact for differentials as χ → 0, and therefore are approximately correct
when the differentials are integrated for small χ at constant t. We can
rearrange the two expressions for V̂ to give

V̂ = −
aRt

cRχ
= −

c Tχ

aTt
. (7)

With (3), (6), and (7) this gives two relations each for dT and dR
in terms of V̂ . When we integrate these partial differential equations,
we integrate dT, dR along the R frame but integrate the dt, dχ along
a radial connection between the co-moving galactic points χ. Because
the radial differential changes with time, V (t, χ) changes with time and
distance. We will find this combination requires c(t) to vary with t
in a determined way, at least for the short distance from the origin
where a power series is valid. When there is no acceleration, and V is a
function only of χ in an expanding universe, c(t) will be constant (see
Appendix A.5).

§2.2.2. Power series in χ determines c(t). To obtain T (t, χ) and
R(t, χ) near the origin, we need to integrate the differentials dT and dR
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for small χ. We will do this by expanding these physical coordinates in
a power series in χ out to the lowest power that will give a non-trivial
c(t) in the limit of zero χ. We will use the two relations for dR to
determine the expansion coefficients of R and V̂ , then use the resultant
expansion of V̂ in the two relations for dT to expand T and determine
the requirement for c(t).

Since V̂ will vanish at the origin (see definitions in §2.1), the constant
in the power series for V̂ is zero; so let

− V̂ = w1(t)χ + w2(t)χ
2 + w3(t)χ

3 + O(χ4) . . . (8)

where the wi(t) are unknown functions to be determined. From Rχ = aγ
(6) we get

Rχ = a

(

1 +
1
2

V̂ 2 +
3
8

V̂ 4 + . . .

)

=

= a

(

1 +
1
2

w2
1 χ2 + w1 w2 χ3 + O(χ4)

)

. . . (9)

If we integrate (9) at constant t, noting that R vanishes at χ =0 (see
definitions in §1), we obtain

R = aχ +
1
6

aw2
1 χ3 +

1
4

aw1 w2 χ4 + O(χ5) . . . (10)

Herein R(t, χ) is the physical differential dR summed over all the
galactic points up to χ, and is thus the physical distance to χ at time t.
The first term of (10) is the “proper” distance to which all measurements
of distance reduce close to the origin [9].

Partial differentiation of (10) by t at constant χ gives

Rt = cȧχ +
1
6

χ3 d

dt
(aw2

1 ) +
1
4

χ4 d

dt
(aw1 w2) + O(χ5) . . . , (11)

where the dot represents the derivative with respect to t̂. We can then
find V̂ from equations (7), (9), and (11):

− V̂ =
aRt

cRχ
= ȧχ + f(t)χ3 + O(χ4) . . . , (12)

where
f(t) = −

1
2

w2
1 ȧ +

1
6c

d

dt
(aw2

1 ) . (13)

By comparison of (12) with (8), we see that w1 = ȧ, w2 =0, and
w3 = f(t).
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We will now use this expression for V̂ to find two relations for Tt.
The first comes from Tt = γ (3):

Tt = 1 +
1
2

V̂ 2 = 1 +
1
2

ȧ2 χ2 + O(χ4) . . . , (14)

Even though dT and dt are both measured on standard physical
clocks, we note that the galactic clocks t measured at constant χ run
slower than the AP clocks T as they move away from the origin (di-
lation). When measured at constant R, the AP clocks run slower,
tT =1+ V 2

2 , in accordance with the Lorentz transform. Neither of these
apply if we don’t carry out the power series to the second power of
χ. Of course the distance contraction is also consistent with Lorentz,
Rχ

a = aχR =1+ V̂ 2

2 (9).
We can find an expression for Tχ, using (7), (14), and (12):

Tχ = −
a

c
TtV̂ =

a

c

[

1 +
1
2

ȧ2χ2 + O(χ4) . . .

]

×

×
[
ȧχ + f(t)χ3 + O(χ4) . . .

]
, (15)

and multiplying the brackets gives

Tχ =
a

c

[

ȧχ +
1
2

ȧ3χ3 + f(t)χ3 + O(χ4) . . .

]

. (16)

By integration with χ at constant t with T = t at χ =0 we find

T = t +
1
2

aȧ

c
χ2 + O(χ4) . . . (17)

If we partially differentiate (17) by t, we get a second expression
for Tt:

Tt = 1 +
1
2

χ2 d

dt

(
aȧ

c

)

+ O(χ4) . . . (18)

If the transform is to have a Lorentz transform close to the origin,
we must have the two expressions for Tt (equations 14 and 18) agree to
at least the 2nd power of χ (i.e., the second power of V̂ ). This leads to
a differential equation that determines a variable c(t) given by

ȧ2 =
d

dt

(
aȧ

c(t)

)

. (19)

Also mathematically, when we regard c(t) as a variable to be deter-
mined by the limiting process of χ → 0, we must keep the term in χ2
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since it is the lowest term that determines c(t), which we have therefore
called non-trivial. (In the previous publication [17] the author showed
that a transform with physical distance can be found for a constant light
speed that leads to a Tt ∝ V̂ 2

4 , and therefore is not consistent with a
Lorentz transform and is valid for only a smaller range of physicality.)

To get an explicit expression for c(t), multiply (19) by a, change the
variable dt to da = ȧc(t)dt to yield

da

a
=

c

aȧ
d

(
aȧ

c

)

. (20)

One can see that c ∝ ȧ is a solution, so

c(t)
c0

=
ȧ(t̂)
ȧ(t0)

= αE , (21)

where α is the normalized scale factor

α ≡
a

a0
, (22)

and E is the normalized Hubble ratio H(t̂)

E ≡
H

H0
=

1
H0

ȧ

a
. (23)

The subscript 0 denotes the value at t = t0, the present time. We
can take c0 to be unity, so that c(t) would be measured in units of c0,
but for most equations in this paper I will retain c0 for clarity. The field
equation (see §3) will enable us to evaluate α and E and thus c(t).

§2.3. Variable light speed c(t) derived from radial AP trans-
forms (defined in §2.1).

§2.3.1. Procedure for finding radial AP transforms using the
velocity V . We would now like to find radial AP transforms that will
hold for all values of the FLRW coordinates and reduce to the physical
coordinates for small distances from the origin. The most general line
element for a time dependent spherically symmetric (i.e., isotropic) line
element (see Weinberg [9, p. 335]) is

ds2 = c2A2dT 2 − B2dR2 − 2cCdTdR − F 2
(
dθ2 + sin2θ dφ2

)
, (24)

where A, B, C, and F are implicit function of T and R, but explicit
functions of t and χ. We are using the same notation for time and dis-
tance as we did for the physical coordinates, but understand that they
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may be physical only for small distances from the origin. We have
included the physical light speed c(t) in the definition of the coefficient
of dT .

We will look for transformed coordinates which have their origins on
the same galactic point as χ =0, so R =0 when χ =0, where there will
be no motion between them, V̂ =0, and where T is t, since the time on
clocks attached to every galactic point is t, including the origin. We will
use the same angular coordinates as FLRW and make F = ar to corre-
spond to the FLRW metric, but will find only radial transforms where
the angular differentials are zero. Of course, full four dimensional trans-
forms to time and three rigid axes have not been found, nor are they re-
quired to determine c(t). They have only to meet the requirement of be-
coming L̂ close to the origin. By definition radial AP transforms do this.

Then R and T will be functions of only t and χ: T = T (t, χ) and
R = R(t, χ), and we will still have (1). Let us consider a radial point at
R in the AP system. When measured from the FLRW system (χ, 0, 0, t̂),
it will be moving at a velocity given by

V = a(t)

(
∂χ

∂t

)

R

= c V̂ . (25)

This velocity will be the key variable that will enable us to obtain
radial AP transforms of the full radial coordinates. We will now find
the components of the contravariant velocity vector U t̂ = dt̂

ds of a point
on the R axis in both the FLRW coordinates and the AP coordinates.
To get the time component in FLRW coordinates χ, θ, φ, t̂ we divide the
FLRW metric (197) by dt̂2 with dω =0 to obtain

(
ds

dt̂

)2

= 1 − a(t)2
(

dχ

dt̂

)2

=
(
1 − V̂ 2

)
≡

1
γ2

. (26)

To get the spatial component, we use the chain rule applied to for-
mulae (25) and (26):

dχ

ds
=

dχ

dt̂

dt̂

ds
=

V̂

a
γ . (27)

For AP coordinates R, θ, φ, T , the radial component of the con-
travariant velocity vector is zero (see definitions under Assumption III).
The point is not moving in those coordinates; that is, the radial com-
ponent is rigid. This means that a test particle attached to the radial
coordinate will feel a force caused by the gravitational field, but will
be constrained not to move relative to the coordinate. Alternatively, a
co-located free particle at rest relative to the radial point will be acceler-
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ated, but will thereafter not stay co-located.
The AP time component of the velocity vector is dT

ds = 1
cA . This

makes the vector Uμ = dxμ

ds in the AP coordinates

Uμ =

(

0, 0, 0,
1

cA

)

(28)

and in the FLRW coordinates

Uμ =

(
γ V̂

a
, 0, 0, γ

)

. (29)

To make it contravariant, its components must transform the same
as dT, dR in (1):

1
cA

=
1
c

Tt γ +
1
a

Tχ γ V̂

0 =
1
c

Rt γ +
1
a

Rχ γ V̂





. (30)

Manipulating the second line of (30) gives

V̂ = −
aRt

cRχ
. (31)

If we invert (1), we get

dt̂ =
1
D

(
Rχ dT − Tχ dR

)

dχ =
1
D

(

−
1
c

Rt dT +
1
c

Tt dR

)





, (32)

where

D =
1
c

Tt Rχ −
1
c

Rt Tχ =
1
c

Tt Rχ

(

1 + V̂
c Tχ

aTt

)

(33)

using (31). We can enter dt̂ and dχ of (32) into the FLRW metric (194)
to obtain coefficients of dT 2, dR2 and dTdR. One way to make ds2

invariant is to equate these coefficients to those of (24):

A2 =
1

T 2
t

1 − V̂ 2

(
1 + V̂

cTχ

aTt

)2 , (34)

B2 =
a2

R2
χ

1 −
(

cTχ

aTt

)2

(
1 + V̂

cTχ

aTt

)2 , (35)
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and

C = −
a

Tt Rχ

V̂ + cTχ

aTt
(
1 + V̂

cTχ

aTt

)2 . (36)

If we put ds = 0 in (24), we obtain a coordinate velocity of light vp:

vp

c
=

(
∂R

∂T̂

)

S

= −
C

B2
±

√(
C

B2

)2

+
A2

B2
. (37)

We need to remember that the c(t) in these equations is the physical
light speed assumed for the FLRW metric.

The equations for A, B, and vp simplify for a diagonal metric (C =0).
Then (36) becomes

c Tχ

aTt
= − V̂ (38)

and (34), (35), and (37) become

A =
γ

Tt
=

tT
γ

, (39)

B =
aγ

Rχ
=

aχR

γ
, (40)

vp

c
=

A

B
, (41)

where we have used (32) with C =0 to obtain the inverse partials.
Thus, rigidity gives us a relation of dR to V̂ (31), and diagonalization

gives us a relation of dT to V̂ (38). If we find V̂ (t, χ), we can find R(t, χ)
and T (t, χ) by partial integration.

This metric becomes M̂ when A→ 1, B → 1, C → 0 and ar → R, and
we get the relations in formulae (3–6) so that the transformed metric
becomes M̂ in four dimensions. The light speed for AP coordinates
differs from that of the FLRW coordinates as R increases from zero by
the ratio A

B .
Even when the full physicality conditions are not met, we can say

something about the physicality of the coordinates with the use of cri-
teria (Assumption V) developed by Bernal et al. [16]. They developed
a theory of fundamental units based on the postulate that two ob-
servers will be using the same units of measure when each measures
the other’s differential units at the same space-time point compared to
their own and finds these cross measurements to be equal. Thus, if
A,B,C = A, 1, 0, dR will be physical because Rχ

a = aχR = γ (40) and
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dR uses the same measure of distance as adχ, which FLRW assumes
is physical. (Of course, the converse is not true; if this equality does
not hold for dT , it may still be physical, but the clocks may be running
slower due to gravitational time shifts; e.g., see equation 112). Similarly,
if A,B,C =1, B, 0, then the AP transform will have physical time.

At this point we would like to examine quantitatively how far from
the M̂ metric our transformed metric is allowed to be in order for its
coordinates to reasonably represent physical measurements. We can
consider the coefficients A, B, and C one at a time departing from their
value in the M̂ metric. For example, let us consider the physical distance
case B =1, C =0 and examine the possible departure of the time rate in
the transform from that physically measured. Then, from (39): Tt = γ

A ,
tT = γA. Thus, 1−A represents a fractional increase from γ in the
transformed time rate Tt and dT , and thus the fractional increase from
physical of an inertial rod at that point. We can make a contour of
constant A on our world map to give a limit for a desired physicality of
the transform.

§2.3.2. Diagonal radial AP transformed coordinates have
physical c(t) close to the origin. We show in Appendix A that
there exist an infinite number of radial AP transformed coordinate
systems which satisfy the M̂ requirements close to the origin. Ap-
pendix A.1 derives diagonal transforms (C =0) using physical time
(A =1) for all physical times T . These all independently show that the
light speed becomes c(t)∝ ȧ for small distances, where the transforms
become Lorentz.

Appendix A.2 shows the diagonal transforms for physical distance
(B =1, C =0) for all physical distances R. To integrate the PDEs for
this transform, we need to use the GR field equation (FE). Because the
equations in Appendix A.1 and Appendix A.2 are different from each
other, they show, as we would expect, that it is not possible to have
diagonal transforms with physical R and physical T simultaneously for
all values of t, χ (except for an empty universe).

At all distances for A =1, C =0, the AP time T can be measured
on AP physical clocks, but the AP distance R cannot be measured on
physical rulers for all distances. For B =1, C =0, the AP distance R can
be measured by physical rulers on a AP frame for all distances, but the
AP time T cannot be measured by physical clocks (except for small R).
We can calculate an acceleration (Appendix B) for a flat universe that
is zero at the origin, and increases with distance; the physical distance
R acts like you might expect for a rigid ruler on whom the surrounding
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masses balance their gravitational force to zero at the origin, but develop
an inward pull as the distance increases.

Appendix A.3 describes similarity solutions for both types for a flat
universe (Ω=1). These solutions are very useful to display alternatives.
For the physical distance transform, when we use the FE for a constant
light speed [17], we get a transform that does not have the Lorentz
dependence on V̂ . When we use the FE that allows a varying light speed,
this yields a transform that has the Lorentz dependence on V̂ if, and
only if, we use the same light speed c(t) as for the power series expansion
and the physical time transform. This self-consistency indicates that we
are using the correct FE and the correct c(t).

To summarize, we have shown that every transform that has a vari-
ation of Tt =1+ V̂ 2

2 , as required by a Lorentz transform close to the

origin, has c(t)∝
√

da
dt . If we do not require this variation of Tt, it is

possible to find a physical distance transform with a constant c [17],
although its physicality goes a much shorter distance into the universe.
However, it is not possible to find a diagonal physical time transform
with constant c (see Appendix A.1). Although there is no requirement
that there be such a transform nor that the physical distance trans-
form have a large range of physicality, the derived c(t) has an attractive
universality that can be made consistent with Special and General Rel-
ativity (see §3 and Appendix C).

§3. Extension of General Relativity to incorporate c(t). We
can accommodate the variable light speed c(t) in the field equation of
General Relativity for FLRW by allowing the gravitation “constant” G
to be time varying so as to keep constant the proportionality function
between the GR tensors (176). We avoid taking derivatives of c(t) by
using t̂, where dt̂ = c(t)dt. The dependence on real time t is found by
transforming the resultant solution back to t from t̂. This is described in
Appendix C.8. This enables us to calculate a(t), c(t), and trajectories
in the time and distance of AP coordinates.

In (202) and (203) of the Appendix are the two significant field
equations of the extended GR applied to an ideal fluid:

3ȧ2

a2
+

3k

a2
− Λ =

8πG

c4
ρc2, (42)

and

2
ä

a
+

ȧ2

a2
+

k

a2
− Λ = −

8πG

c4
p , (43)

where the dots represent derivatives with respect to t̂. Following Peebles
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(see [22, p. 312]), we define

Ω ≡ ρ0
8πG0

3c2
0H

2
0

(44)

and

Ωr ≡ −
k

H2
0a2

0

(45)

and

ΩΛ ≡
Λ

3H2
0

. (46)

For very small a there will also be radiation energy density which
will not be considered in this paper.

The normalized Hubble ratio E in (23) is determined by (42):

1
H0

ȧ

a
= E =

√
Ω
α3

+
Ωr

α2
+ ΩΛ , (47)

which allows us to evaluate c (t)
c0

= αE. The Ωs are defined so that

Ω + Ωr + ΩΛ = 1 . (48)

At t = t0: α =1, E =1, and c
c0

=1.
The cosmic time t measured from the beginning of the FLRW uni-

verse (Big Bang) becomes

c0H0 t =
∫ α

0

c0 dα

cαE
=
∫ α

0

dα

α2E2
. (49)

For a flat universe with Ω = 1 and Ωr = ΩΛ = 0:

c0H0 t =
α2

2

c0H0 t0 =
1
2

α =

(
t

t0

)1/2






, (50)

c

c0
= αE = α−1/2 =

(
t0
t

)1/4

. (51)

For other densities with Ωr =1−Ω, ΩΛ =0,

c0H0 t =
Ω

(1 − Ω)2
[
y − ln (1 + y)

]
, (52)
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where
y =

1 − Ω
Ω

α . (53)

There is no periodicity of α with t for Ω > 1. The higher density de-
creases the time t0 → ln Ω

c0H0
Ω, and the universe scale factor α continues

to expand, asymptotically approaching a maximum at Ω
(Ω−1) . As Ω→ 0,

a→ t, c→ c0, the universe becomes Minkowski (see Appendix A.5).
For experiments attempting to measure the variation of the light

speed at the present time, the derivative of c(t) (equation 21 with
Ωb

α4 � 1) will be more useful:

1
c0H0

(
1
c

dc

dt

)

t=t0

= 1 −
3
2

Ω − Ωr = −
Ω
2

+ ΩΛ . (54)

Notice that this fraction is negative when matter dominates, and
goes from zero at zero density to − 1

2 at the critical universe density. A
vacuum energy density opposes the gravitational effect of matter; when
it dominates, the slope is an increasing function of time.

§4. Paths of galactic points and received light. Because there
is a special interest in having a physical description for distance in the
universe, we display the physical distance transforms. The physical dis-
tance results for flat space (Appendix A.3) are shown in Figs. 1 and 2.
Here we have used the field equations with the generalized time (see §3)
to derive the equations for a(t)= a0

(
t
t0

)1/2
and c(t)= c0

(
t0
t

)1/4
.

Fig. 1 plots distance R against the time at the origin (cosmic time t)
for galaxies (constant χ) and for incoming light reaching the origin at
t
t0

=1. The galactic paths are labeled with their red shift z, determined
by the time t of the intersection of the photon path with the galactic
path z =−1+ c

α =−1+
(

t0
t

)3/4
, assuming the frequency of the emitted

light does not change with c(t). Notice that light comes monotonically
towards the origin from all galactic points. This photon path has a slope
of c0 =1 close to the origin where the distance R and time t are both
physical, but decreases as the distance increases and the time decreases,
different from c(t).

Although the distance uses physical rulers, the coordinate system as
a whole may not be physical for times shorter than some limit. A reason-
able limit (see §2.3.2) might be A =0.95, R =2.3

(
t0
t

)3/4
, shown by the

heavy dotted line in the figures. Together with B =1, C =0 for these
physical distance coordinates, this shows that the assumption that T
and R represent a physical AP coordinate system inside this limit is very
good, with distances accurately represented, and time rates Tt within
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Fig. 1: Physical distances ( R
c0t0

) for Ω = 1 plotted against the normalized

time on clocks at the origin ( t
t0

) for various galaxy paths (labeled by their
red shift z) and for the light path which the photons take after emission
by any galaxy that arrives at the origin at t

t0
= 1. Notice that the slope of

this light path close to the origin is c0 = 1, where V 2 � c2. The light path
starts at the far horizon at t = 0, traveling monitonically towards the origin,
but slower than its present speed in these non-local coordinates (like the
Schwarzschild coordinates). The galactic paths show the expanding universe
in physical coordinates, some traveling faster than the light speed in these
non-local coordinates. The dotted line shows the approximate upper limit of
physicality, where both R and the transformed time T are physical.

5% of physical measurements on adjacent inertial rods.
Fig. 2 plots these distances vs the transform time T at R. At the

emission of the photons, T is finite (even for t = 0), presumably the
transformed time it takes for the galactic point to get out to the point
of emission. At T

t0
=1 the slope of the light path is c0 =1, and at the

physicality limit T
t0

=0.40 the slope is only 5% less than c(t)= 1.50.
At the intersection of this physicality limit with the photon path that
arrives at the origin at t0, the time t

t0
=0.2 and the red shift z =2.4.

Thus, if we have a flat universe with Ω=1, the last 80% of the universe
history out to a z of 2.4 can be treated with physical coordinates T and
R. This z is as large as any of the supernova Ia whose measurements
have suggested an accelerating universe. It extends out into the universe
much farther than a similar transform for a constant light speed [17] that
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Fig. 2: Physical distances ( R
c0t0

) for Ω = 1 vs the transformed time ( T
t0

) on
clocks attached at R for various galaxy paths (labeled by their red shift z)

and for the light path that arrives at the origin at T = t0 = 0.75
(

1
c0H′

0

)
. The

horizon is the locus of points where t = 0, γ =∞. The heavy dotted line shows
the approximate upper limit of physicality for the transformed coordinates
(A = 0.95, that is < 5% error in physical time rate Tt). The slope of the light
path is very close to c (t) out to the limit of physicality. Light is emitted at
finite T allowing transformed time for galactic points to move out from R = 0
before emitting their light we can see.

extends only out to a red shift of z =0.5.
When the velocity of the points of the physical distance approaches

the light speed when viewed from FLRW, the physical distance shows a
Fitzgerald-like contraction so that it reaches a finite limit at the horizon
(t =0), beyond which there are no galactic points and no space. This
is true for all universe densities including an empty universe. (It is also
true for a constant light speed [17].)

I have included three additional figures, also using the extended
field equation of §3 (and Appendix C.8). Fig. 3 is for a density of Ω= 1

2
(Appendix A.2), which has paths intermediate between Ω=1 and Ω=0.
Fig. 4 shows the effect of dark energy (Appendix A.2 for ΩΛ = 3

4 ), where
all the curves tend to have inflection points when the dark energy be-
comes dominant. The empty universe (Ω=0 in Appendix A.1.4) shown
in Fig. 5 is physical for all space-time, undistorted by gravitational
curvature; galactic points and light travel in straight lines. It is very
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Fig. 3: Physical distance ( R
c0t0

) for lower density universe (Ω = 1
2
, Ωr = 1

2
)

plotted against the transformed time ( T
t0

) on clocks attached at R for var-
ious galaxy paths (labeled by their red shift z) and for the light path that

arrives at the origin at T = t0 = 0.767
(

1
c0H′

0

)
. The horizon (t = 0) and the

physicality line (A = 0.96) occur at later times and shorter distances than for
a flat universe (Fig. 2), but not as much as for the empty universe (Fig. 5).
Similarly, the light path is straighter than Fig. 2, but not as straight as Fig. 5.

similar to Figs. 2–4 in that it demonstrates a finite horizon, beyond
which there are no galactic points and no space. Figs. 1–2 are from
the numerically integrated similarity solution, Figs. 3–4 are from the
numerically integrated initial value solution, and Fig. 5 is an analytic
function solution [27]. These illustrate complete coverage of 0 6Ω6 1.

§5. Underlying physics. Our objective of transforming the FLRW
into the physical variables of the AP frame is the same as Zelmanov’s
chronometric invariants [6] that project events onto observable coor-
dinates. The AP transforms, of course, do not have the generality of
Zelmanov’s chronometric invariants. Somehow, the variable light speed
c(t) considered as physical according to my definition must be a variable
function of his invariant constant observable light speed. The present
paper allows for the possibility of a variable light speed and then derives
a relation for it for the FLRW universe. The GR field equation can be
maintained unchanged to calculate value for c(t) as a function of the
universe energy density and curvature by assuming the gravitational
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Fig. 4: Physical distance ( R
c0t0

) vs transformed time ( T
t0

) for dark energy

(Ω = 1
4
, ΩΛ = 3

4
). The present time t0 = 0.407

(
1

c0H′
0

)
. Notice the inflection

points on all curves where the dark energy density becomes larger than the
matter density.

constant G to be proportional to c(t)4.
It really should not surprise us that the universe has a variable light

speed. It is well known that an observer accelerated relative to an
inertial observer measures a variable light speed depending on the ac-
celeration (see [21, p. 173]).

The effect of gravitational potential on light speed is also demon-
strated by the Schwarzschild coordinates, where the coordinate light
speed as well as the time on clocks are changed by the gravitational
potential at a distance from a central mass.

In the FLRW universe there are clearly gravitational forces caused
by the energy density of the universe. These cause the expansion of the
universe to be slowed down (or speeded up if dark energy predominates)
shown by the change in the FLRW scale factor ȧ(t). The case we have
considered differs from either of the first two. We have examined a rigid
radial rod whose gravitational force as felt by an observer attached
to the rod increases with distance along the rod. The light speed vL

measured by such an observer stays within 5% of c(t) while the latter
changes by a factor of 1.5 (for Ω=1) out to the physicality limit. The
variation is not directly caused by the acceleration dV

dt , but mostly by
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Fig. 5: Physical distance( R
c0t0

) for the empty expanding universe (Ω = 0,

Ωr = 1) plotted against the transformed time ( T
t0

) on clocks attached at R
for various galaxy paths (labeled by their red shift z) and for the light path
that arrives at the origin at T = t0. The horizon is the locus of points where
t = 0. All lines are straight and physical, since there is no space curvature,
and the light speed is c (t) = c0. The remotest galactic point travels from the
origin at T = 0 out to c0t0

2
at the light speed c0.

the change in a, which in turn is affected by the gravitational forces. An
alternate way to view the light speed variation is to recognize that the
FLRW metric has already accounted for both the gravitational forces
and the light speed variation when it satisfies the GR field equation,
which therefore relates the two.

In Appendix C for FLRW we show that for a flat universe (Ω=1)
with the presently derived variable light speed, there is a gravitational
field g in the physicality region that increases linearly with distance
from the origin. If we insert into (105) the mass of the universe inside
the radius R, M0 =4πρ0

R3

3 at time t0, we obtain

g = −
G0M0

R2
(55)

the Newtonian expression for gravitational field at a radius R inside
a sphere of uniform density. This is another indication that the T,R
coordinates are obeying Special Relativity laws near the origin because
an accelerated particle in the rest frame of SR has the Newtonian ac-
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celeration [23]. Note that g < 0 indicates an inward pull on the galactic
points towards the origin of the AP axis, which we can interpret as the
cause for the universe expansion to slow down (for Λ=0).

Thus, just as the assumption of homogeneity requires the universe
to be either expanding or contracting, it seems to require the physical
light speed to depend on this rate of expansion or contraction.

§6. To observe c(t). The most straight forward way to observe c(t)
is to find a way to directly measure the light speed or the atomic spec-
tra wavelengths with the same precision and stability that we can now
measure spectra frequency. A fractional change in speed or wavelength
should be 6×10−17 in 100 secs or 2×10−11 in a year if c

c0
=
(

t0
t

)1/4
. With

this much sensitivity, however, an observation would have to separate
out the possible effects on light speed of the gravitational forces of local
masses like the Earth, the Moon, and the Sun.

The variable light speed c(t) might affect all of distant observations.
For instance in the measurement of supernova Ia [10–13] it will affect
the measurement of acceleration of galaxies. Thus, if the luminosity of
the super novae Ia decreases with increasing c, this would decrease the
implied acceleration and the dark energy density. For a flat universe
Ω=1 the apparent distance dL is given by

dL =
2

H0

(
1 + z

)[
1 −

(
1 + z

)−1/3
]√

L(c) , (56)

where L is the fraction by which the luminosity is changed by c (t)
c0

. Note
that if H ′

0 is the reciprocal of the measured slope of dL vs z for small z,
then H ′

0 = 3H0
2 and c0t0 = 1

2H0
= 3

4H′
0
. In general, H ′

0 = H0

(
1+ Ω

2 −ΩΛ

)
.

For the observations to be entirely explained by c(t) instead of dark
energy would require the luminosity to vary as c−5 =(1+z)−5/3 for a flat
universe without dark energy. This is the c dependence of a radiating
atom; that is the radiation of a dipole eaB , where aB ∝ ε0

mc2 ∝ 1
c (t) is the

Bohr orbit and we have assumed ε0c(t), and mc2(t) to be constant. All
atom and ion radiation should have this same dependence on c. Since
all the light is presumably from excited atoms or ions, this seems to
be a credible alternative to dark energy as the source for the apparent
accelerating universe. Measurements at large z [14] should be able to
distinguish between dark energy and c(t) dimming. Recently, this ap-
parent acceleration has been confirmed using distant large clusters as a
standard candle [15]. This light is also likely to come from excited atoms
or ions. Even if c(t) does not explain all the apparent acceleration, the
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calibration of the standard candles and therefore the amount of dark
energy will be affected. Other astronomical observations that might be
affected by c(t) are cosmic background radiation, gravitational lensing,
and dynamical estimates of galactic cluster masses.

Unfortunately, the c(t) calculated herein solves neither the flatness
nor the horizon problem without inflation: The flatness problem changes
little because the Hubble ratio has a similar dependence on the universe
scale factor a(t). The horizon problem remains because c(t) enters both
the transverse speed of light and the radial speed of galactic points. At
the time of the release of the CBR photons, without inflation light could
have traveled laterally only θ =

∫ t

0
c∂tχ

ra , where χ =
∫ t0

t
cdt
a . For Ω=1,

z =3, 000, θ = z−1/3 =0.07 radians, or 4 degrees, and so galactic points
could not have interacted separated by more than this angle.

§7. Conclusion. From the cosmological principle of spatial homo-
geneity and isotropy we can obtain the FLRW metric, which allows a
variable light speed, that describes a universe of inertial frames attached
to expanding galactic points with FLRW differential co-moving coordi-
nate times the scale factor a(t) interpreted as a physical differential
distance. The FLRW metric is Minkowski-like in its radial derivative.
Locally, SR applies, so a AP rigid frame attached to the origin has a
Minkowski metric. Thus, for a radial world line we can use a Lorentz
transform from FLRW to the AP frame that keeps the two Minkowski
world line elements invariant in order to obtain time and distance coor-
dinates to describe radial movement in the universe close to the origin.
Because the FLRW metric has a time varying coefficient multiplying the
space differential, this produces a velocity between the galactic points
and the AP frame that is a function of time and distance. If the Lorentz
transform is to remain valid out from the origin to the lowest power of
this velocity, a consistent limiting process to zero distance from the ori-

gin requires a variable light speed c(t)∝
√

da
dt , the square root of the rate

of change of the scale factor of the FLRW universe.
By homogeneity, the origin can be placed on any galactic point,

so that this variable light speed enters physical laws throughout the
universe.

We extend the field equation by allowing the gravitational “con-
stant” and the rest masses of particles to vary in such a way as to keep
constant the rest mass energy and the Newtonian gravitational energy.
We have shown that this results in a constant relating the tensors of the
field equation, like the field equation with a non-variable light speed.
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This yields a new function of cosmological time for the scale factor of
the FLRW universe and thus values for c(t). These enable the calcula-
tion of physical distance vs physical time for galactic and light paths in
the universe.

Although three orthogonal rigid axes are inadequate to describe
three-dimensional motion in accelerating fields, it is possible to describe
one dimensional motion on a single axis. We have done this for the
FLRW universe by finding radial AP transforms from FLRW for all dis-
tances whose differentials remain close to SR Minkowski with this same
variable light speed out to a red shift of 2 for a flat universe.

I have shown that the physical coordinates on the AP frame near the
origin have a gravitational field for a flat universe that increases linearly
with radius just like the Newtonian field for a spherical distribution of
uniform mass density. Like Schwarzschild, a gravitational red shift is
predicted for a distant AP light source observed at the origin of the
FLRW universe.

To summarize, I am persuaded that the physical light speed through-

out the FLRW universe is proportional to
√

da
dt because:

1) Based on usual assumptions, in the limit of zero distance from the
origin a radial Lorentz transform from FLRW to a AP rigid frame
requires it;

2) All radial AP transforms from FLRW coordinates that I have
investigated that have a Lorentz transform from FLRW near the
origin have this same variable light speed;

3) We can use an extended Einstein field equation to calculate the
transformed distance vs time for galactic points and light that
behave in a physically sensible way;

4) The transformed gravitational field in the physicality region for a
flat universe is Newtonian for a spherical distribution of uniform
mass density and can be considered the cause of the deceleration
of the universe (when dark energy can be neglected);

5) The AP transform extends out into space much farther than for
a constant light speed.

Just as the assumption of homogeneity requires the universe to be
either expanding or contracting, it seems to require the light speed to
depend on this rate of expansion or contraction under the influence of
gravity.

One of the radial AP transforms from FLRW has a distance coor-
dinate that remains physical for all distances. We can interpret this to
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be a global reference distance (used in Figs. 1–5), although the time of
this transform becomes unphysical at large distances.

Some other physical “constants” that depend on the light speed must
also be changing with cosmic time. I have suggested some constraints
on this variability: 1) retaining the conservation of the stress-energy
tensor, including keeping constant the rest mass energy, the gravita-
tional energy, and the Schwarzschild radius, and 2) keeping frequency
of atomic spectra constant, which means the fine structure constant,
and the Rydberg frequency. These still make possible the geometriza-
tion of relativity with an adaptation of vectors and tensors such as the
energy-momentum vector, the stress-energy tensor, and the electromag-
netic field tensor.

This c(t) should be observable by direct measurement of light speed
or spectral wavelength if they could be measured to the same precision
as frequency, and if the possible effects on light speed of the gravitational
forces of nearby masses like the Earth, the Moon, and the Sun could
be isolated. It should have an impact on understanding distant cosmic
observations. Perhaps it will provide an alternative to dark energy to
explain the apparent acceleration of galaxies via supernova Ia. Analysis
of cosmic background radiation, gravitational lensing, and dynamical
estimates of galactic cluster masses could also be affected. But the
recognition of this c(t) does not solve the flatness nor horizon problems
without inflation.

I have outlined in Appendix C how a variable light speed can be
included in an extended Special and General Relativity by keeping con-
stant the rest energy of particles and the energy of Newtonian gravity
acting between them.

Appendix A. AP (almost physical) coordinates with diagonal
metrics

A.1. AP coordinates with physical time

A.1.1. Partial differential equation for V̂ = V/c(t). We will be
considering radial AP transforms for diagonal coordinates that (36)
makes

V̂ = −
c Tχ

aTt
. (57)

For diagonal coordinates with physical time at all t and χ, A =1.
Thus, (34) becomes

Tt = γ . (58)
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This automatically guarantees the Lorentz time dilation ( ∂T
∂t )R =

= 1
tT

= 1
γ (32). We need only find a transform for which B → 1 close to

the origin to make it AP.
We proceed by finding a differential equation with V̂ as the only de-

pendent variable. Thus, we write a formula for T , using (58) and (57):

T = t +
∫ χ

0

Tχ ∂χt = t +
∫ χ

0

(
−

a

c
γ V̂
)

∂χt , (59)

where we have used the boundary condition that at χ =0, T = t, and the
symbol ∂xt signifies integration with χ at constant t. It can be partially
differentiated with respect to t (giving γ) and then with respect to χ
and with the use of (25), noting that dγ = γ3 V̂ dV̂ and 1 + V̂ 2γ2 = γ2,
we obtain a PDE for V̂ :

V̂t + V̂χ

(
∂χ

∂t

)

R

=

(
∂V̂

∂t

)

R

= − V̂
(
1 − V̂ 2

) c

a

d

dt

(a

c

)
. (60)

A.1.2. The general solution for V̂ , R, and T for all a. Equation
(60) can be rewritten as

∂V̂R

V̂ (1 − V̂ 2)
= −

∂(a
c )R
a
c

, (61)

where the subscript on the partial differential indicates the variable to
be held constant. This can be integrated with an integration constant
ln κ. Since the integration is done at constant R, then κ = κ(R), and
inversely, R = R(κ). Integrating (61), we get

V̂ = −
κ

√
a2

c2 + κ2
, (62)

where the sign of κ will be positive for an expanding universe, where
the χ points will stream out radially past a point at R.

At this point, R is an unknown function of κ. The various possible
coordinate systems which solve our PDEs are characterized, in large
part, by the function R(κ). But for all, in order for V̂ to vanish when
R = 0 (see definitions in §1), κ must also; so always

κ(0) = 0 . (63)

We note that as long as κ(R) remains finite, V̂ goes to −1, and V
goes to −c(t), for a(t) = 0, i.e. for t = 0, the horizon.

Let us now look at lines of constant κ(R), i.e. constant R, in t, χ
space. Equation (25) can be integrated for χ with use of (62) at constant
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κ to give the following:

χ(t, κ) =
∫ ∞

t

c κ ∂sκ

a(s)
√

a2

c2 + κ2
. (64)

For an expanding universe, we have set the upper limit at ∞, because
we expect that if R is kept constant the galactic point χ that will be
passing any given R will eventually approach zero as FLRW time t
approaches infinity.

At this point, we have obtained V̂ = V̂ ∗(t, κ) from (62) and have also
obtained the function χ(t, κ). We can in principle invert (64) to obtain
κ in terms of t and χ: κ = K(t, χ). This gives us the velocity function
V̂ (t, χ)= V̂ ∗

(
t,K(t, χ)

)
. If the function R(κ) were known, we would

then also have R(t, χ)= R
(
K(t, χ)

)
.

The time T (t, χ) can be found by noting from (57) that

Tχ = −
aV̂

c
Tt = −

aV̂

c
γ = κ . (65)

By substituting (65) into (59), and integrating over κ instead of χ
by dividing the integrand by the partial derivative of (64) with respect
to κ, we find an expression for T (t, χ):

T (t, χ) = t +
∫ ∞

t



1 −
1

√
1 + c2κ2

a2



 ∂sκ , (66)

where κ is put equal to K(t, χ) after integration at constant κ in order
to get T (t, χ).

This completes the solution. Since κ(R) can be any function that
vanishes at the origin, there thus exist an infinite number of solutions
for our transformed coordinates with A =1, C =0.

A.1.3. Independent determination of c(t). To determine physi-
cality, we will next find 1

Rχ
close to the origin. Rχ = κχ

κ′(R) can be written
in an inverted form by taking the derivative of (64) with respect to κ
at constant t:

1
Rχ

= κ′

[ (
∂K

∂χ

)

t

]−1

= κ′

(
∂χ

∂κ

)

t

= κ′(R)
∫ ∞

t

c2 ∂sκ

a2
(
1 + c2κ2

a2

)3/2
. (67)

By (41), the light speed is given by

vL =
cA

B
=

cγ a

Rχ
= cγ aκ′(R)

∫ ∞

t

c2 ∂sκ

a2
(
1 + c2κ2

a2

)3/2
. (68)
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It was (68) that gave me the first indication that the light speed could
be variable, and that it was the same near the origin where κ(0)= 0 for
all κ(R), which would be a requirement that it was indeed the physical
light speed.

To be physical B = γa
Rχ

→ 1 as R approaches 0. Putting γ =1,
κ(0)= 0, and Rχ = a in (67), and changing the integration variable from
t to a(t) gives

1
a

= κ′(0)
∫ ∞

a

c da

a2 ȧ
, (69)

where the dot indicates differentiation by t̂, and κ′(0) is a constant to be
determined by c(t0)= 1. Note that the integral of (69) is independent
of the functional form of κ(R), and is therefore the same for all κ(R).
It was (67) that gave me the first indication that the light speed ( cRχ

γa )
was variable, and that it was the same near the origin for all κ(R).

Equation (69) is an integral equation for c(t). By differentiation of
both sides of (69) by a, we can obtain

c(t) =
1

κ′(0)
ȧ , (70)

which, as we should expect, is the same c(t) of (21) we showed for all
physical coordinate systems for κ′(0)= ȧ(t0)

c0
= a0H0

c0
. This independent

derivation of c(t) confirms the validity of carrying the series expansion
to second order since these complete transforms give the same c(t).

Notice that we have found this solution and the value for c(t) without
using the GR field equation nor any assumption about the variation of
rest mass m and gravitational constant G.

A.1.4. Zero density universe Ω=0. It is interesting to consider
the limiting case of a zero density universe: Ω=0, Ωr =1, a0H0 =1
(45). Equation (21) makes c =1. Equation (47) makes α̇ = H0 for all
t, χ. Integrating gives a = t. Equation (64) gives χ = cosh−1 t

κ , or κ =
= K(t, χ)= t sinh χ. We can then find from (62) that V (t, χ)=− tanh χ
and from (26) that γ = cosh χ so that

c = 1 =
Rχ

γa
=

dR

dκ

Kχ

γ t
=

dR

dκ
. (71)

Thus the physicality condition is met for all R with R = K and A =1,
B =1, so that the complete transform with (66) becomes

R = t sinh χ , T = t cosh χ . (72)
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These coordinates have been known ever since Robertson [27] showed
that this transformation from the FLRW co-moving coordinates at zero
density obeyed the Minkowski metric. What is new is that this solution
was derived from the equations we obtained for our physical time trans-
forms with A =1. It can also be obtained from the physical distance
transforms (B =1) since equations (60) and (77) for V̂ become identical
with V̂t =0 and a

c = a = t. It is the only known rigid physical coordi-
nate system for all times and distances in a homogeneous and isotropic
universe. In Fig. 5, R is plotted vs T to show how similar it is to the
physicality region of Figs. 2–4.

A.2. AP coordinates with physical distance

A.2.1. Partial differential equation for V̂ . For diagonal coordi-
nates with physical dR for all t and χ, B = 1, so (35) becomes

Rχ = a γ . (73)

By integration we find

R = a

∫ χ

0

γ ∂χt , (74)

and partial differentiation with respect to t gives

Rt = cȧ

∫ χ

0

γ ∂χt + a

∫ χ

0

γt ∂χt . (75)

We can then find V̂ from (31), (73), and (74) as

V̂ = −
Rt

c γ
= −

1
c γ

(

cȧ

∫ χ

0

γ ∂χt + a

∫ χ

0

γt ∂χt

)

. (76)

This is an integral equation for V̂ . It can be converted into a partial
differential equation by multiplying both sides by γ and partial differ-
entiating by χ:

γ2
(

V̂x +
a

c
V̂ V̂t

)
= − ȧ = −

1
c

da

dt
. (77)

Note that this is substantially different from the (60) for V̂ that we
obtained for physical time. This means that it is not possible to find
diagonal transforms with both physical time and physical distance for
all values of t and χ (except for Ω=0). It is possible to have either one
or the other be physical at all t and χ with the other being physical
only close to the origin.
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A.2.2. General solution for V̂ . Equation (77) can be solved as a
standard initial-value problem. Let W =− V̂ . Equation (77) becomes

Wχ −
a

c
WWt =

1
c

da

dt

(
1 − W 2

)
. (78)

Define a characteristic for W (t, χ) by
(

∂t

∂χ

)

c

= −
a

c
W (79)

so (
∂W

∂χ

)

c

=
1
c

da

dt

(
1 − W 2

)
(80)

(the subscript c here indicates differentiation along the characteristic).
If we divide (80) by (79) we get

(
∂W

∂t

)

c

= −
1
a

da

dt

(1 − W 2)
W

. (81)

This can be rearranged to give

W (∂W )c

W 2 − 1
=

(∂a)c

a
. (82)

This can be integrated along the characteristic with the boundary
condition at χ =0 that W =0 and a = ac:

1 − W 2 =
a2

a2
c

=
1
γ2

. (83)

This value for W (assumed positive for expanding universe) can be
inserted into (79) to give

(
∂t

∂χ

)

c

= −
a

c

√

1 −
a2

a2
c

. (84)

We can convert this to a differential equation for a by noting that
cdtc = dt̂c = 1

ȧ dac
(

∂a

∂χ

)

c

= − aȧ

√

1 −
a2

a2
c

. (85)

We can provide an integrand containing functions of only α by using
the GR relation for ȧ in (47), which does not assume that ȧ ∝ c. Equa-
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tion (85) then becomes
(

∂α

∂χ

)

c

= −a0H0 α2E(α)

√

1 −
α2

α2
c

. (86)

This can be integrated along the characteristic with constant αc,
starting with α = αc at χ =0. This will give χ = X(α, αc). This can be
inverted to obtain αc(α, χ). When this is inserted into (83), we have a
solution to (78) for W (α, χ).

I will now assume that c∝ α̇, then later show numerically that this
makes A→ 1 as R→ 0 to prove physicality. (For Ω=1 in §A.3.1, c∝ α̇
is shown explicitly.) Then W (t, χ) can be found from W (α, χ) by using
c
c0

= αE(α) in (21) to get t(α):

t =
∫ α

0

dα

cα̇
=

1
c0H0

∫ α

0

dα

α2E2
. (87)

A.2.3. Obtaining T, R from V̂ . Equations (25), (31), and (57)
show that

W = −
a

c

(
∂χ

∂t

)

R

=
a

c

Rt

Rχ
=

c

a

Tχ

Tt
(88)

so
Tχ −

a

c
WTt = 0 . (89)

Thus T has the same characteristic as W (79), so that ( ∂T
∂χ )c =0,

and T is constant along this characteristic:

T (t, χ) = T (tc, 0) = tc ≡ t
(
αc(t, χ)

)
, (90)

where t(α) is given in (87) and αc(α(t), χ) is found by inverting the
integration of (86). This gives us the solution for T (t, χ) and A

A =
γ

Tt
=

ac

a

(
∂t

∂tc

)

χ

=
ac

a

dac

dtc

da
dt

(
∂a

∂ac

)

χ

. (91)

The solution for R can be obtained by integrating (74), using γ from
(83) and ac(t, χ) from (86):

R(t, χ) = a

∫ χ

0

γ ∂ηt =
∫ χ

0

ac(t, η) ∂ηt . (92)

Alternatively, for ease of numerical integration we would like to inte-
grate dR along the same characteristic as T and W . This can be obtain-
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ed from the PDE (
∂R

∂χ

)

c

= Rχ + Rt

(
∂t

∂χ

)

c

. (93)

If we insert the values for these three quantities from equations (73),
(88), and (79), we get

(
∂R

∂χ

)

c

= γa +
cW

a
γa

(

−
aW

c

)

=
a

γ
=

a2

ac
. (94)

It is interesting that this solution for the physical distance coordi-
nates (PD) is unique for each a(t), whereas for the physical time coordi-
nates (PT), there are an infinite number of solutions. This is because to
obtain a solution for PD, we had to provide an additional relation, viz,
for ȧ (86), whereas for PT no additional relation was needed. Possibly
we could use the same relation in PT to make κ(R) ∝ R as for the
similarity solution for a flat universe (see §A.3.2). This would make PT
unique as well, but I haven’t been able to show this.

A.3. Similarity solutions for flat universe, Ω=1 I have found
similarity integrations for the special case of Ω=1 where the GR solu-
tion is a = a0( t

t0
)1/2 and c = c0( t0

t )1/4 (see §3). To simplify notation let

us normalize time to t
t0
→ t, a

a0
→ a, and χ a0

c0t0
→x, T

t0
→T , R

c0t0
→R,

and let W =− V̂ .

A.3.1. Physical distance. Equation (77) then becomes

Wx − t3/4 WWt =
1
2

t−1/4
(
1 − W 2

)
. (95)

This can be converted into an ordinary differential equation (ODE)
by letting

u =
x

t1/4
(96)

so that (95) becomes

W ′

(

1 +
uW

4

)

=
1
2

(
1 − W 2

)
, (97)

where the prime denotes differentiation by u.
Similarly we can find ODE’s for T and R by defining:

T

t
≡ q (u) , (98)

and
R

t3/4
≡ s(u) , (99)
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where q(u) and s(u), from equations (57) and (31), are given by the
coupled ODE’s:

q′
(

1 +
uW

4

)

= q W , (100)

and

s′
(
W +

u

4

)
=

3
4

s . (101)

It is useful to find that q = γ2, s′ = γ, s = γ u+4W
3 , and A = γ

Tt
=

= 1+ uW
4

γ = vp

c ; so T = γ2t, and R = t3/4γ u+4W
3 .

For small values of u, W = u
2 , q =1+ u2

8 , s = u, vp

c =1+O(W 4), and
R = t1/2x = ax. The light speed vp measured on AP remains close to
that measured on FLRW out to large R. We also note that Tt → 1+ W 2

2 ,
confirming that these coordinates have physical time close to the origin,
justifying c(t)= t−1/4.

An alternate approach would be to start with c(t) unknown, but of
the form c = t−b. Then the GR field equation (42) will give α = td, where
d = 2

3 (1 − b). Equation (95) then becomes W ′(2+uWd)= 2d(1−W 2),
where the independent variable is u = x

td/2 . For T = tq this will make

q′(2+uWd)= 2qW and Tt = q− udq′

2 . For small u, q→ 1+ d
2 u2,

W →ud, and Tt → 1+ (1/d−1)
2 W 2. To be Lorentz Tt → 1+ W 2

2 so that

d = 1
2 and b = 1

4 , confirming that c ∝
√

da
dt .

For constant light speed, b =0, d = 2
3 and Tt → 1+ W 2

4 , slower than
Lorentz as found by the author in [17]. This has implications for the
use of the GR field equation. We can’t integrate the physical distance
transforms without using the FE. When we use it for a constant light
speed, we don’t get the Lorentz transform for small V̂ . When we use it
for an arbitrary varying light speed, we get the Lorentz transform when
we use the same c(t) as for the power series and for the physical distance
transform. This self-consistency indicates that we are using the correct
FE and the correct c(t).

As t→ 0, u→∞, γ →κu2, W → 1− 1
2κ2u4 , q→κ2u4, and s→κ u3

3 .

T and R both remain finite at this limit with T →κ2x4, and R→κ x3

3 ,
where xL → 4 at t→ 0. It is difficult to determine κ from the numerical
integration because of the singularity at large u, but my integrater gives
0.0364. The fact that T does not go to zero when t goes to zero results
from equating T with t at t =1 and not at t =0.

The distance R and time T can be found from the numerical inte-
gration of the coupled ODE’s. The paths of galactic points are those
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for constant x. The path photons have taken reaching the origin at t1
is found by calculating xp vs t and using the transform to T,R. Thus,
for Ω=1

xp =
∫ t

t1

c

a
dt = 4

(
t1/4

1 − t1/4
)
. (102)

For light arriving now, t1 =1, the value of up becomes

up = 4

(
1

t1/4
− 1

)

= 4 (c − 1) , (103)

where we inserted c = 1
t1/4 to obtain the relation of c to up.

Galactic and photon paths are shown in Figs. 1 and 2. An ap-
proximate upper limit of physicality is shown by the heavy dotted line:
A =0.953, W 2

2 =0.253, u =2.0, R =2.30 t3/4 =1.35 T 3/4. At t =0, R vs
T provides a non-physical horizon: Rh =1.747 T 3/4

h .
It is also interesting to calculate the acceleration g. If we insert the

values of V , R, and a
c in (128), we obtain

−g =
1

8γ t

(
u

1 + uW
4

)

, (104)

where the units of g are c0
t0

. For small u close to t = t0, g goes to zero
as −u

8 .
Since small u is the region with physical coordinates, it is interesting

to express g in unnormalized coordinates:

−g =
1
8

c0

t0

R

c0 t0
= G0 ρ0

4π

3
R , (105)

where we have used Ω=1 in (44). For small t, −g goes to ∞ as
1

2γ t5/4 =1.2 t−3/4 along the light path. At the physicality limit, −g =

=0.69 c0
t0

=12.5×10−9 m/sec2.

The g can be obtained from a gravitational potential using g =− dφ
dR ,

which for close distances is:

φ = G0 ρ0
2π

3
R2 =

R2

16 t20
= c2

0

u2

16
. (106)

The slope of the light path in Fig. 1, a coordinate velocity of light,
can be shown in normalized units for this incoming light path to be

vL =

(
dR

dt

)

L

= −
(
1 +

u

4

)(1 − W

1 + W

)1/2

. (107)
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For small u,
vL −→ 1 −

u

4
. (108)

For the outgoing light path

vL =

(
dR

dt

)

L

=
(
1 −

u

4

)(1 + W

1 − W

)1/2

. (109)

For small u,
vL −→ 1 +

u

4
, (110)

Thus, the coordinate light speed has a different u dependence on R
for incoming and outgoing light paths because the slope is dependent
on t, not R. This differs from the Schwarzschild solution that has the
same R dependence of the coordinate light speed for both directions of
the light path.

The observed light at the origin ν that is emitted from a AP source
at R as ν0 is also smaller than the same light emitted at the origin:

ν

ν0

=

(
∂T

∂t

)

R

=
1

γA
= q

1 − W 2

1 + uW
4

. (111)

Close to the origin it is:

ν

ν0

= 1 −
V̂ 2

2
= 1 −

u2

8
= 1 −

2φ

c2
0

. (112)

This, of course, is the same as a dilation effect for a collocated galac-
tic point at R that shows up as a gravitation red shift at the origin due
to homogeneity of t.

A.3.2. Physical time. There is also a similarity solution for phys-
ical time, A =1, for Ω=1. With the same normalizations as above,
using (60), the ODE for W is

W ′
(
W +

u

4

)
=

3
4

W
(
1 − W 2

)
(113)

with the ODE’s for (T,R, q, s, xp). This is the same as physical distance
for small u, but differs numerically at large u. Useful relations for
physical time are obtained from the general solution in Appendix A.1:
R =2κ, q = γ

(
1+ uW

4

)
, s =2γW , and B = γ u+4W

3s = 2
3

(
1 + u

4W

)
. These

can be used to find the gravitational field from (128):

g = −
3

2 t5/4

γ W 2

u + 4W
, (114)
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and the coordinate velocity for an incoming light path:

vL = −
3
2

(
1 + u

4

1 + u
4W

)(
1 − W

1 + W

)1/2

. (115)

Equations (114) and (115) approach the same values as physical
distance for small u.

Appendix B. Gravitational field in the FLRW and AP coord-
inates

We wish to find the components of the radial acceleration of a test
particle located at R in the AP transformed system. We will do this by
calculating the FLRW components of the acceleration vector and find
the transformed components by using the known diagonal transforms.
For the FLRW components, we will use the metric

ds2 = dt̂2 − a2dχ2 − a2r2dθ2 − a2r2 sin2θ dφ2. (116)
Let

x1 = χ , x2 = θ , x3 = φ , x4 = t̂ , (117)

and the corresponding metric coefficients become

g44 = 1 , g11 = −a2, g22 = −a2r2, g33 = −a2r2 sin2 θ . (118)

For any metric, the acceleration vector for a test particle is

Aλ =
dUλ

ds
+ Γλ

μνUμUν , (119)

where the Γ’s are the affine connections and Uλ is the velocity vector
of the test particle. In our case the test particle is at the point R
on the transformed coordinate, but not attached to the frame so that
it can acquire an acceleration. Instantaneously, it will have the same
velocity as the point on the transformed coordinate, and its velocity and
acceleration vectors will therefore transform the same as the point (30).

We will be considering accelerations only in the radial direction so
that we need find affine connections only for indices 1, 4. The only
non-zero partial derivative with these indices is

∂g11

∂x4
= −2aȧ . (120)

The general expression for an affine connection for a diagonal met-
ric is

Γλ
μν =

1
2gλλ

(
∂gλμ

∂xν
+

∂gλν

∂xμ
−

∂gμν

∂xλ

)

. (121)
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The only three non-zero affine connections with 1,4 indices are

Γ4
11 = aȧ , Γ1

41 = Γ1
14 =

ȧ

a
. (122)

The acceleration vector in FLRW coordinates of our test particle
moving at the same velocity as a point on the transformed frame be-
comes

At̂ =
dU4

ds
+ Γ4

11U
1U1

Aχ =
dU1

ds
+ Γ1

41

(
U4U1 + U1U4

)





. (123)

Using U4 and U1 in (29) we find

At̂ = γ

(
∂γ

∂t̂

)

R

+ aȧ
γ2 V̂ 2

a2
= γ4 V̂

(
∂V̂

∂t̂

)

R

+
ȧ

a
γ2 V̂ 2

Aχ = γ

(
∂

∂t̂

(
γ V̂

a

))

R

+ 2
ȧ

a

γ2 V̂

a
=

γ4

a

(
∂V̂

∂t̂

)

R

+
ȧ

a2
γ2 V̂






. (124)

Since the acceleration vector of the test particle at R in the trans-
formed coordinates will be orthogonal to the velocity vector, it becomes

AT = 0

AR =
DUR

ds
≡ −

g

c2





, (125)

where AR is the acceleration of a point on the R axis (so the gravita-
tional field affecting objects like the galactic points is the negative of
this), and g is defined so that mg is the force acting on an object whose
mass is m. For a range of time in which c(t) is reasonably constant,
g = d2R

dT 2 , the normal acceleration. Since the vector Aλ will transform
like dT, dR (1):

AR =
1
c

Rt A
t̂ + Rχ Aχ (126)

so that

−
g

c2
=

[

γ4 V̂

(
∂V̂

∂t̂

)

R

+
ȧ

a
γ2 V̂ 2

]
1
c

Rt +

+

[
γ4

a

(
∂V̂

∂t̂

)

R

+
ȧ

a2
γ2 V̂

]

Rχ . (127)
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With the use of (31), this can be simplified to

−
g

c2
=

Rχ

a

[

γ2

(
∂V̂

∂t̂

)

R

+
ȧ

a
V̂

]

. (128)

In terms of the normalized coordinates for a flat universe (Appen-
dix A.3), this becomes

g = −
s′

t

[

γ2 W ′
(u

4
+ W

)
−

W

2

]

. (129)

The acceleration g can be thought of as the gravitational field caused
by the mass of the surrounding galactic points, which balances to zero at
the origin, where the frame is inertial, but goes to infinity at the horizon.
It is the field which is slowing down the galactic points (for Λ = 0). It
is also the field that can be thought of as causing the gravitational red
shift (Appendix A.3).

Appendix C. Special and General Relativity extended to in-
clude a variable light speed

C.1. Introduction. The aim of this section is to outline a way that
not only the Lorentz transform, but all of Special (SR) and General
Relativity (GR) can be extended to allow a variable light speed with
minimal changes from standard theory. The extended Lorentz transform
for local coordinates is derived from the basic assumption of relativity
that the light speed c is the same for all moving observers at the same
space-time point even though the light speed and their relative velocity
V may vary. To form SR vectors and tensors we use a differential con-
struct dT̂ = cdT from physical time T [4] and a dimensionless velocity
V̂ = V

c . In addition we propose that the rest mass of a particle varies
so as to keep its rest energy constant. This seems reasonable in order to
eliminate the need for an external source or sink of energy for the rest
mass. These assumptions simplify the construction of SR vectors and
conserves the stress-energy tensor of an ideal fluid. For GR, we propose
the standard GR Action, but use the extended stress-energy tensor and
allow the gravitational constant G to vary with c. The variable light
speed is introduced in the line element that determines the space-time
curvature.

We will use the notation t for time when the light speed is c(t), as it
must be for a uniform and isotropic universe if it is to be variable. Then
t̂ can be a transform from t: t̂ =

∫
c(t)dt. The GR curvature tensor is

derived from a line element that typically has the time t appearing in
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the combination of c(t)dt that would require the tensor to contain the
derivatives of c. The use of t̂ instead of t eliminates these derivatives
without changing the relations of the components of the tensors, and
also allows all the relations of curvilinear coordinates used for constant
c =1 to be retained. Then, from a solution with t̂ the observable physical
t can be found with a transform from t̂ to t.

C.2. The extended Lorentz transform and Minkowski metric.
Let us consider two physical frames moving with respect to each other.
The first frame (S) will have clocks and rulers whose readings we will
represent by T and x. The second frame (S∗) will move in the x direction
at a velocity of V =

(
∂x
∂T

)
x∗ as measured by T and x and will have

clocks and rulers whose coordinates we will represent by T ∗ and x∗.
The velocity of the first frame will be V ∗ as measured by T ∗ and x∗.
We assume that the light speed, even though variable, is the same as
measured on both frames at the same space-time point. We also allow
V to be variable.

In order for S to measure the small separation of points Δx∗ on S∗,
S∗ sends two simultaneous (ΔT ∗ =0) signals as measured on its clocks,
one at the beginning of Δx∗ and the other at the end. S measures
the space between the signals as Δx, but does not see these signals
as simultaneous. The far end signal is delayed by ΔT over the near
end signal for this reason. S measures Δx∗ to be the distance Δx
reduced by the distance that S∗ has traveled in the time ΔT after S’s
simultaneity (ΔT =0) with the near end, i.e., Δx−V ΔT . Since we are
looking for linear relationships, we assume that the S∗ measure of Δx∗

is proportional to the S measure:

Δx∗ = α (Δx − V ΔT ) , (130)

where we have allowed α and V to be varying, but approach a constant
value for small Δ’s. We also assume that for the two Cartesian directions
Δy and Δz perpendicular to the motion along x that the S∗ and S
coordinates are the same

Δy = Δy∗, Δz = Δz∗ (131)

and that the time T does not depend on y or z. α will be determined
from the assumption that the light speed is the same on all moving
frames. We will adapt the analysis of Bergmann [26, p. 33–36] to a
variable light speed. Choosing the point of origin so that ΔT and ΔT ∗

vanish when Δx and Δx∗ vanish, we expect that ΔT ∗ will be a linear
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function of ΔT and Δx:

ΔT ∗ = γ ΔT + ζ Δx , (132)

where α, γ, and ζ are slowly varying functions that approach a constant
for small Δ’s. We will now determine their values.

We assume that the light speed can be variable, but in small intervals
of time and distance it will be almost constant. It will have the same
values in S∗ as in S at the same space-time point. For light moving in
an arbitrary direction, each measures the light speed c as the change in
distance divided by the change in time of its own coordinates:

Δx2 + Δy2 + Δz2 = c2ΔT 2, (133)

Δx∗2 + Δy∗2 + Δz∗2 = c2ΔT ∗2, (134)

where we have chosen an origin where all the Δ’s vanish. By using (131)
and (130) in (134), we can eliminate the starred items to get

α2 (Δx − V ΔT )2 + Δy2 + Δz2 = c2 (γΔT + ζ Δx)2 . (135)

We can rearrange the terms to obtain

(
α2 − c2 ζ2

)
Δx2 − 2

(
V α2 + c2 γ ζ

)
ΔxΔT + Δy2 + Δz2 =

=
(
c2 γ2 − V 2α2

)
ΔT 2. (136)

If we compare this to (133) we get

c2 γ2 − V 2α2 = c2, (137)

α2 − c2 ζ2 = 1 , (138)

V α2 + c2 γ ζ = 0 . (139)

We can solve these three equations for the three unknowns α, γ,
and ζ. We obtain the solutions:

γ2 =
1

1 − V 2

c2

, (140)

ζ =
1 − γ2

γV
= −

γV

c2
, (141)

α2 = −
c2 γ ζ

V
= γ2. (142)
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Thus in the differential limit of Δ’s going to zero, we write them as
differentials, so the relation of differentials becomes

dT ∗ = γ

(

dT −
V

c2
dx

)

, (143)

dx∗ = γ (dx − V dT ) , (144)

By inverting this we get

dT = γ

(

dT ∗ +
V

c2
dx∗

)

, (145)

dx = γ (dx∗ + V dT ∗) , (146)

so V ∗=−V as you would expect.
This is the same as for a constant c, except here c has been allowed

to vary.
We define a line element ds by the relation

ds2 ≡ c2 dT 2 − dx2 − dy2 − dz2. (147)

If we substitute (131), (145) and (146) into (147), the form is the
same:

ds2 = c2 dT ∗2 − dx∗2 − dy∗2 − dz∗2. (148)

That is, the extended world line is invariant in form to changes in
coordinates on frames moving at different velocities. The line element
is symmetric in the spatial coordinates, so it is valid for motion in any
direction. In polar coordinates this becomes

ds2 = c2 dT 2 − dR2 − R2 dθ2 − R2 sin2θ dφ2. (149)

This is the Minkowski line element (M̂) extended to allow for a
variable light speed. Both L̂ and M̂ are valid in the two dimensions T
and R even if the metrics of S∗ and S did not have equal transverse
differentials, but had no transverse events (dθ= dφ= dθ∗= dφ∗=0).

Notice that if we divide (147) and (148) by c2 the two equations
still have identical forms, so that the differential time dτ ≡ ds

c is also
invariant in form to L̂ transforms. Since dτ = dT for constant spatial
coordinates, τ is the time on a clock moving with the frame.

This derivation has depended on a physical visualization so that
we assume that differentials that represent physical time and radial
distance must have a M̂ metric for their time and distance differentials
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in at least two dimensions and an extended Lorentz transform L̂ to other
collocated physical differentials of time and distance on a frame moving
at a velocity V . We will call such differentials physical coordinates.
Time and distance coordinates that do not have these relations will not
be physical; one or the other may be physical, but not both unless they
have a M̂ metric.

The extended Lorentz transform L̂ can be written in a symmetric
form using dT̂ ≡ cdT and V̂ ≡ V

c with the velocity in the R direction
as it will be in a homogeneous and isotropic (FLRW) universe:

dT̂ ∗ = γ
(
+dT̂ − V̂ dR

)
, (150)

dR∗ = γ
(
−V̂ dT̂ + dR

)
. (151)

In general for a varying c, T̂ is not a transform from T alone, al-
though, as we have shown in (150), we can use the construct dT̂ = cdT
to describe the L̂ transform. In a FLRW universe for events in the radial
direction measured by the variables (t, χ), if c is variable, it is a simple
function of t since homogeneity in space makes it independent of χ. In
this case t̂ is a transform from t alone (e.g., formula 196).

C.3. Extended SR particle kinematics using contravariant
vectors. In this section I will outline the way vectors and tensors
can be defined when the light speed is variable. In Cartesian coordi-
nates, let dx1, dx2, dx3 = dx, dy, dz, and dx4 = dT̂ = cdT . The M̂ metric
then becomes

ds2 = ημν dxμdxν , (152)

where ημν =(−1,−1,−1, +1) for μ = ν, and zero for μ 6= ν. The velocity
ẋμ is dxμ

dT̂
= V μ

c with ẋ4 =1. (The dot represents the derivative with

respect to dT̂ .) The world velocity becomes

Uμ =
dxμ

ds
= γ ẋμ. (153)

The quantities ẋμ and Uμ are therefore dimensionless. In order
to make the rest mass energy constant, we define m̂ = mc2 and the
extended energy-momentum vector as

Pμ = m̂Uμ = m̂γ ẋμ, (154)

so that P 4 = m̂γ = E, the particle energy. If p is the magnitude of the
physical momentum (γmV ), the EP vector magnitude is E2−c2p2 = m̂2.
It has units of energy rather than momentum or mass.
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The L̂ transform for the components of the EP vector is

E∗ = γ
(
E − V̂ pc

)
. (155)

For photons, m̂ =0, so E = hν and p = h
λ = hν

c , and the L̂ trans-
form is

ν∗ = γ ν
(
1 − V̂

)
, (156)

which is the familiar relativistic Doppler effect.
The force vector becomes

Fμ =
dP μ

ds
= m̂Aμ = m̂

dUμ

ds
. (157)

The first three components F i

γ will be the force f i felt by an object
of mass m when the light speed is c (i represent the three spatial coordi-

nates). In taking the derivative of P i, we are implying that mc
d( γV

c )

dT is

more fundamental in determining the physical force than m d(γV )
dT when

the light speed is variable. We can express the gravitation force in the
usual way as mgi, where gi = Ai c2

γ . Herein c
γ F 4 is the rate of work f iV i

required to change the rate of change of energy d(γm̂)
dT . All these world

vectors are invariant to the L̂ transform and the M̂ line element. They
become the usual vectors when c is constant.

C.4. Extended analytical mechanics. We will next show how the
Euler-Langrange equations apply to extended particle kinematics [26].
For a mechanical system with conservative forces in (n+1)-dimensional
space whose differentials are (dxi, dT̂ ), the action S is

S =
∫

Lp ds . (158)

Minimizing S gives relations for Lp, the particle Lagrangian. With
no force acting, we will use

Lp = m̂
√

ημν UμUν , (159)

so the momenta are

Pμ =
∂Lp

∂Uμ
=

m̂ημν Uν

√
ημν UμUν

. (160)

The root in this equation has the value 1 which makes it possible to
solve it for Uμ
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Uμ =
ημνPν

m̂
√

ημν UνUν
=

Pμ

m̂
, (161)

consistent with (154).
So,

UμPμ =
ημνPμPν

m̂
. (162)

The Hamiltonian Ĥ becomes

Ĥ = −Lp + UμPμ = −
√

ημνPμPν +
ημνPμPν

m̂
. (163)

Let p ≡
√

ημνPμPν = m̂, so

Ĥ =
p2

m̂
− p . (164)

Thus Ĥ vanishes, but its derivative with respect to Pμ does not:

Uμ =
∂Ĥ

∂Pμ
= 2

ημνPν

m̂
−

ημνPν

p
=

Pμ

m̂
, (165)

dPμ

ds
= −

∂Ĥ

∂xμ
= 0 , (166)

where Pμ is conserved since we have considered no force acting.

C.5. Extended stress-energy tensor for ideal fluid. An ideal
fluid can be treated in a similar way. It is a collection of n particles
per unit volume of mass m. We can form a rest energy density function
ρ̂ = nm̂. In this case, ρ̂ is not constant because n is a a function of time
and distance. We will use t instead of T to indicate that we are initially
limiting this analysis to a rest frame of FLRW attached to a galactic
point where c is a function of t. This can be transformed to other frames
by a L̂ transform. It turns out that ρ̂ using dt̂ and uμ = V μ

c (t) has much
the same properties as ρ = nm using dt and V μ with constant c.

The conservation law for particles in nonrelativistic terms for n flow-
ing at a velocity V i = cui is

∂n

∂t̂
+ nui

, i = 0 , (167)

where we have assumed that the differential of c with distance is zero.
For the conservation of energy we must include the stress forces tijdAj

operating on the area of the differential volume, like the pressure p where
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tij = pδij . We can convert the area stress forces by Gauss’ theorem to
a volume change in momentum to give a total 3D energy flux of cP i,
where

P i = ρ̂ui + uj tji. (168)

The conservation of the fluid rest energy (ui = 0) then becomes

∂ρ̂

∂t
+ div(cP i) = 0 , (169)

or
∂ρ̂

∂t̂
+ P i

, i = 0 . (170)

The Newtonian law linking the rate of change of the generalized
velocity ui = dxi

dT̂
to the force per unit volume f i in nonrelativistic terms

can be written as

ρ̂
dui

dt̂
= f i. (171)

We can follow through the steps in any of the standard texts [26] to
obtain the generalized stress-energy tensor of an ideal fluid in its rest
frame to be

Tμν = Tμν =









p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 ρ̂









,

which is used in §C.8.
This can be generalized for a frame moving at a world velocity Uμ:

Tμν = (ρ̂ + p) UμUν − pημν . (172)

One can see that this is the same tensor since in the rest frame of
the fluid T̂ = t̂, U i =0, U4 =1.

The divergence of the stress-energy tensor is the force per unit vol-
ume:

Tμν
,ν = Fμ. (173)

The conservation of rest energy density (eq170) can then be written:

Fμ = Tμν
,ν = 0 . (174)

C.6. Extended electromagnetic vectors and tensors. We will
assume that the light speed that appears in electromagnetic theory
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(E/M) is the same as appears in relativity theory. If it were not so,
it would be a remarkable coincidence if they were the same today, but
different at other times. The E/M light speed obeys the relation

c2 =
1

ε0 μ0
, (175)

where ε0 and μ0 are the electric and magnetic “constants” of free space,
resp. If c is variable, then either ε0 or μ0 or both must vary.

Current measurements with atomic clocks [18, 19] have achieved an
accuracy that indicate the frequency of atomic spectra do not change
with time. Of course, when measured on a frame moving at a different
velocity or in a gravitational field, frequency does change. There are
also astronomical indications of a variation in αf [20], but these are
much smaller than would occur if c(t) changed as calculated here. On
an inertial frame, this means that the fine structure constant αf and
the Rydberg constant R∞c (expressed as a frequency) do not change
with c(t).

The fine structure constant αf in SI units [24] is

αf =
e2

4πε0~c
, (176)

and the Rydberg frequency is

R∞c = α2
f

me c2

4π~
=

e4 me

ε20 (4π~)3
. (177)

Because αf is dimensionless, the 4πε0 is often omitted in the fine
structure constant since it is unity in Gaussian coordinates, but it is
essential here if we are to consider a variable c(t) for the universe.

For these to remain constant while keeping e, ~ and mc2 constant
requires that

ε0(t) c(t) =
1

μ0(t)c(t)
≡ k = ε(t0) c(t0) = constant, (178)

where 1
k =
√

μ0
ε0

, the impedance of free space. This assumption means

that the electrostatic repulsion f between two electrons will vary:

f = −
e2

ε0R2
. (179)

Maxwell’s equations in 3D field vectors in the rest frame of FLRW
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with a constant speed of light [25] are

curl E +
∂B

∂t
= 0

curl H −
∂D

∂t
= J

divD = σ

divB = 0

divJ +
∂σ

∂t
= 0






. (180)

Scalar φ and vector A potentials can be introduced such that

B = curl A

E = −grad φ −
∂A

∂t





, (181)

and the equation for the force on a particle with charge q, mass m, and
velocity V is (see [26, p. 118])

m
d(γV )

dt
= q (E + V ⊗B) . (182)

With the use of t̂ and (178) and with the relations D = ε0E, B = μ0H
for free space, these can be converted to exactly the same equations by
replacing t by t̂ and by replacing the field variables by hat variables
so that the partial time derivatives of hat variables do not include ε0,
μ0, or c except in combinations equaling k, a constant. This is accom-
plished by the following: B̂ = kB = Ĥ = H

c , D̂ = D = Ê = ε0E, σ̂ = σ,
Ĵ = J

c , Â = kA, φ̂ = c
k φ, and q̂ = q. Thus, with hat variables and t̂,

Maxwell’s equations have only two fields Ê, Ĥ with no varying coeffi-
cients

curl Ê +
∂Ĥ

∂t̂
= 0

curl Ĥ −
∂Ê

∂t̂
= Ĵ

divÊ = σ̂

divĤ = 0

div Ĵ +
∂σ̂

∂t̂
= 0






. (183)
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The potential equations become

Ĥ = curl Â

Ê = −grad φ̂ −
∂Â

∂t̂





. (184)

Since they have no coefficients that vary with time, they are L̂ co-
variant to frames with dT̂ = c(t)dT replacing dt̂ just like the original
Maxwell’s equations. Thus, they are valid in every moving frame whose
physical time is T .

With V̂ = V
c and m̂ = mc2 the pondermotive equation 182 becomes

m̂
d(γ V̂ )

dT̂
=

q

ε0

(
Ê + V̂ ⊗ Ĥ

)
. (185)

These all become the usual expressions when the speed of light is
constant c = 1.

E/M world vectors and tensors can be constructed in the usual way
[26]. Thus, the extended potential vector is φ̂μ = (Âi,−φ̂), the extended
charge vector Γ̂μ = (Ĵ i,−σ̂), and the extended E/M field tensor is

F̂μν =









0 −Ĥ3 +Ĥ2 −Ê1

+Ĥ3 0 −Ĥ1 −Ê2

−Ĥ2 +Ĥ1 0 −Ê3

+Ê1 +Ê2 +Ê3 0









.

The field tensor can be obtained from the curl of the potential vector

F̂μν = φ̂μ,ν − φ̂ν,μ (186)

and Maxwell’s equations become the divergence of the field tensor equal-
ing the charge vector [26, p. 113]:

F̂μν
,ν = −Γ̂μ. (187)

The pondermotive equation for a particle of charge q and mass m
becomes a force vector equaling m̂ times an acceleration vector:

q

ε0
F̂μν Ûν = −m̂ημν

dÛν

ds
. (188)

The SR stress-energy tensor is

Tμν =
1
ε0

(

Fμ
λ F νλ −

1
4

ημνFμσFσν

)

. (189)
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For GR with curvilinear coordinates, the stress-energy tensor is

Tμν =
1
ε0

(

Fμ
λ F νλ −

1
4

gμνFμσFσν

)

. (190)

The dimensions of Ê, Ĥ, and Fμν are electric charge per unit area,
whereas for Tμν it is energy per unit volume. Because of ε0, both the
force and the energy density are dependent on c(t) just like the force
between two electrons (179).

C.7. The extended FLRW metric for a homogeneous and iso-
tropic universe. We assume that the concentrated lumps of matter,
like stars and galaxies, can be averaged to the extent that the universe
matter can be considered continuous, and that the surroundings of every
point in space can be assumed isotropic and the same for every point.

By embedding a maximally symmetric (i.e., isotropic and homoge-
neous) three-dimensional sphere, with space dimensions r, θ, and φ, in a
four dimension space which includes time t, one can obtain a differential
line element ds [9, p. 403] such that

ds2 = g(t)dt2 − f(t)

(
dr2

1 − kr2
+ r2 dθ2 + r2 sin2θ dφ2

)

, (191)

where

r =






sin χ, k = 1 ,

χ, k = 0 ,

sinh χ, k = −1 ,

(192)

while k is a spatial curvature determinant to indicate a closed, flat, or
open universe, resp., and

dχ2 ≡
dr2

1 − kr2
. (193)

We let a(t)≡
√

f(t) be the cosmic scale factor multiplying the three-
dimensional spatial sphere, so that the differential radial distance is
a(t)dχ.

The g(t) has normally been taken as g(t)= c2 = constant, so that c
is the constant physical light speed and t is the physical time on each
co-moving point of the embedded sphere. In both cases by physical, we
mean that their value can represent measurements by physical means
like standard clocks and rulers, or their technological equivalents. In
order to accommodate the possibility of the light speed being a function
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of time, we make g(t)= c(t)2. The resulting equation for the differential
line element becomes an extended FLRW metric:

ds2 = c(t)2 dt2 − a(t)2
(
dχ2 + r2 dω2

)
, (194)

where dω2 ≡ dθ2 + sin2θdφ2. For radial world lines this metric becomes
Minkowski in form with a differential of physical radius of a(t)dχ.

It will be convenient to introduce the time related quantity t̂, which
we will call a generalized cosmic time, defined by

t̂ ≡
∫ t

0

c(t)dt , (195)

t =
∫ t̂

0

dt̂

ĉ(t̂)
, (196)

where ĉ(t̂) = c(t), and where the lower limit is arbitrarily chosen as 0.
The line element then becomes

ds2 = dt̂2 − a2
(
dχ2 + r2 dω2

)
. (197)

It should be emphasized that t̂ itself is a legitimate more general
coordinate. t̂ plays the same role in the FLRW space with a variable
c(t) as does t for a FLRW space with constant c. The physical time t
is a transform from it. t̂ and its transform to t allows for the physics to
apply to a variable light speed.

C.8. Unchanged GR field equation for c(t). We assume the
standard action of GR without any non-standard additions that some
have used to produce the variable light speed [4]. We allow the met-
ric that determines the curvature tensor to introduce the varying light
speed. This will create a relationship between the varying light speed
and the components of the stress-energy tensor. In addition we use the
Lagrangian Lse of the extended stress-energy tensor. In order to use the
standard GR action, we assume that G

c4 ≡ Ĝ = G0
c4
0

is constant. This is

needed to keep constant the Newtonian energy −Gm1m2
R when the rest

energy of mass mc2 is constant. We also assume that Λ is constant,
possibly representing some kind of vacuum energy density:

S =
∫

√
−g
(
R − 2Λ + 16πĜLse

)
d4ξ , (198)

where R is the Ricci scalar for the metric

ds2 = gμν dξμdξν , (199)
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and g is the determinate of gμν . Minimizing the variation of S with gμν ,
we get the usual GR field equation:

Gμν + Λgμν = 8πĜTμν , (200)

where Gμν is calculated for a particular metric using the usual Rieman-
nian geometry.

C.9. GR for FLRW universe with c(t). We will now apply this
field equation to an ideal fluid of density ρ and pressure p in a homoge-
neous and isotropic universe for which the extended FLRW line element
in the variables t, r, θ, φ is (194):

ds2 = c(t)2 dt2 − a2

(
dr2

1 − kr2
+ r2 dθ2 + r2 sin2θ dφ2

)

. (201)

As ds is written in (201), the components of Gμν will contain first
and second derivatives of c(t). In order to find a solution to the field
equation we will transform the time variable t to ξ 4 = t̂. This will not
change the relation of Gμν to Tμν , but will eliminate the derivatives
of c(t) in Gμν and transform Gμν to a known solution. t is still the
observable, and t̂ is a non-physical transform from it. For a perfect fluid
of pressure p and mass density ρ, we can define ρ̂ ≡ ρc2 so that ρ̂ obeys
the same conservation and acceleration laws using dt̂ as does ρ using dt
(see §C.5). We can then write the two significant field equations [21,
p. 729] for a(t̂) as

3 ȧ2

a2
+

3k

a2
− Λ = 8πĜρ̂ , (202)

and

2
ä

a
+

ȧ2

a2
+

k

a2
− Λ = −8πĜp , (203)

where the dots represent derivatives with respect to t̂. All variables
(including t̂ and a) are in standard units. Equation (202) can be solved
to give a as a function of t̂, ρ, k, and Λ. When we know c(t̂), we
can obtain the observables a(t) and c(t) by transforming t̂ back to t.
Solutions of these equations are carried out in §3 for a particular c(t).

We would now like to show that the proposed variation of G(c) and
m(c) is internally consistent. Equation (202) with Ĝ = G

c4 and ρ̂ = ρc2

can be multiplied by a3

3 , differentiated, and subtracted from ȧa2 times
(203) to give

d

dt̂

(
Gρa3

c2

)

= −
3G

c4
ȧa2p . (204)
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For small p,
Gρa3

c2
= constant. (205)

If the energy density consists of n particles per unit volume of mass
m, so ρ = nm, then the conservation of particles requires na3 be con-
stant (for small velocities). This makes

Gm

c2
= constant. (206)

This is consistent with our assumptions that G
c4 and mc2 are con-

stant.
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