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Abstract: In this paper, we show that the EGR curvature ten-
sor can be quantized according to the procedure set forth by André
Lichnérowicz which relies on the definition of tensor propagators. This
quantization is here successfully applied to a space-time with constant
curvature defined in the framework of the EGR Theory. Having then
extended the initial Einstein space, it implies ipso facto the existence
of a generalized cosmological constant which thereby finds here a full
physical justification.
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Introduction. General Relativity and quantum field theories are still
the greatest achievements of present-time physics. Although the second
part of our last century has seen some significant progresses, quantiza-
tion rules in a curved space (space-time) background remain a never-
ending unfinished story.

To date, it seems that André Lichnérowicz remains the pioneer who
first succeeded in applying the regular commutation rules to the grav-
itational field in a constant-curvature space. Following the standard
procedure applied to the electromagnetic field in the Minkowski space,
Lichnérowicz formally showed that the varied Riemannian curvature
tensor can also be quantized in the particular case of an Einstein space
with constant curvature. This essential work was published in three
communications to the French Academy of Sciences [1–3]. Those were
lectured at the Collège de France in Paris, during the year 1958–1959.

The quantization rules, which were formulated by Lichnérowicz,
state that:

a) The gravitational field is entirely described by the Riemann cur-
vature tensor;

b) By strict analogy with the electromagnetic field, the varied curva-
ture tensor can be adequately quantized in the Minkowski space
and by continuity in constant-curvature space.

In a curved space-time, the adopted procedure requires the use of
tensor propagators associated with second-order differential operators
(Lichnérowicz [4]). Such propagators are based on the concept of dis-
placement bi-tensors and are analogous to the Green functions intro-
duced by Bryce de Witt et al., during the same period [5]. In this paper,
we will only restrict our study to the related general definitions and we
invite the reader to the referred bibliography for deeper mathematical
analysis.

In the EGR framework (Marquet [6]), the EGR field equations al-
ways retain a true background persistent field tensor (tab)field that super-
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sedes the ill-defined energy-momentum pseudo-tensor of a mass grav-
itational field tab required to satisfy the conservation law within the
Riemannian physics. In the absence of substance (source-free field equa-
tions), the persistent field can be formally merged into a generalized cos-
mological term, thus allowing the definition of a EGR Einstein space.

With this preparation, we are able to extend here the procedure al-
ready developed in the Riemannian framework. The quantization rules
(commutators) are next applied to a massless varied EGR field tensor
defined within the EGR Einstein space, and by doing so, the inferred
EGR second-order curvature tensor becomes symmetric. As a result, all
existing differential operations still hold, and a similar commutator for
the varied EGR 4th-rank tensor can be derived in the EGR constant-
curvature space.

Chapter 1. Some Topics within EGR Theory

§1.1. The EGR manifold

§1.1.1. The EGR field equations

We briefly recall here our previous results needed for the clarity of this
paper.

On the EGR manifold M, are defined the components of the EGR
curvature tensor

(Ra ∙ ∙ ∙
∙bcf )EGR = ∂c Γa

bf − ∂fΓa
bc + Γa

dc Γd
bf − Γa

dfΓd
bc

with the EGR semi-affine connection

Γd
ab = {d

ab} + (Γd
ab)J , (1.1)

where {d
ab} are the regular Christoffel symbols and

(Γd
ab)J =

1
6

(
δd
a Jb + δd

b Ja − 3gab Jd
)
.

As to the physical interpretation of the vector Ja, one can refer to
the explanation given in the earlier publication [7].

The EGR covariant derivative denoted hereinafter by D or ′, applies
to the metric as

Da gbc = ∂a gbc −Γf
ba gfc −Γf

ca gbf =
1
3

(
Jc gab + Jb gac − Ja gbc

)
. (1.2)

The second-order curvature tensor

(Rbc)EGR = ∂aΓa
bc − ∂c Γa

ba + Γd
bc Γa

da − Γd
baΓa

dc (1.3)
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reveals its non-symmetric property∗

(Rab)EGR = Rab −
1
2

(

gab ∇e Je +
1
3

JaJb

)

+
1
6

(∂a Jb − ∂b Ja) (1.4)

and leads to the EGR Einstein tensor

(Gab)EGR = (Rab)EGR −
1
2

(

gab REGR −
2
3

Jab

)

(1.5)

with the EGR curvature scalar

REGR = R −
1
3

(

∇e Je +
1
2

J2

)

. (1.6)

The EGR theory allows for a vacuum persistent field to pre-exist,
which appears in the source-free EGR field equations

(Gab)EGR = (R(ab))EGR −
1
2

(

gab REGR −
2
3

Jab

)

= κ (tab)EGR , (1.7)

where κ= 8πG
c4 is the Einstein constant and G is the Newton constant.

When a massive (anti-symmetric) tensor Tab(ρ) is present on the
right-hand side, we have the EGR field equations

(Gab)EGR = κ
[

Tab(ρ) + (tab)EGR

]
. (1.8)

In the EGR theory, the mass density ρ is now increased by its
own gravity field precisely due to the continuity of the persistent field
(tab)EGR (Marquet [8]). The EGR formulation is therefore a theory
which is capable of describing a dynamical entity (massive particle
together with its gravity field), that follows a geodesic distinct from
the Riemannian geodesic. Accordingly, the isotropic vectors on M are
slightly modified, as we will see below.

§1.1.2. The EGR line element

On the manifold M, the isotropic conoids as they are defined in the
Riemannian picture, do not exactly coincide with the EGR representa-
tion, because the EGR line-element slightly deviates from the standard
Einstein geodesic invariant.

∗We denote covariant derivative on the Riemannian manifold V4 by ∇a or ; while
keeping denotation Da for covariant derivative on M.
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Indeed, consider the vector l whose square is given by

l2 = gab AaAb. (1.9)

Along an infinitesimal closed path, this vector will now vary when
parallel transported according to

dl2 = d(gab)A
aAb + gab(dAa)‖Ab + gab Aa(dAb)‖ =

=
(
dgab − Γc

ad dxdgcb − Γc
bd dxdgac

)
AaAb (1.10)

since
(dAa)‖ = −Γa

id Aidxd (1.11)

with the EGR semi-affine connection defined above (1.1).
From the general definition of the covariant derivative of the metric

tensor (1.2)
Dd gab = ∂d gab − Γc

ad gcb − Γc
bd gac (1.12)

we write the differential as

Dgab = dgab − (Γc
ad gcb − Γc

bd gac) dxd (1.13)

so, we have
dl2 = (Dgab) AaAb, (1.14)

dl2 = (Dd gab) AaAbdxd. (1.15)

The EGR line-element includes a small correction due to the Rie-
mannian invariant ds2

(ds2)EGR = ds2 + d(ds2) . (1.16)

Therefore, we have

d(ds2) = d
(
gab dxadxb

)
. (1.17)

Taking then into account (1.13), we find

d(ds2) =
(
∂d gab − Γad,b − Γbd,a

)
dxadxbdxd, (1.18)

or
d(ds2) =

(
Dd gab

)
dxadxbdxd (1.19)

having noted that
Γab,i = gid Γd

ab . (1.20)

Eventually
d(ds2) = (Dgab) dxadxb (1.21)
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with Dgab = 1
3

(Jc gab +Jb gac−Ja gbc) dxc.
Hence, the EGR line-element is simply expressed by

(ds2)EGR = ( gab + Dgab) dxadxb, (1.22)

which naturally reduces to the Riemannian (invariant) interval ds2 when
the covariant derivative of the metric tensor gab vanishes (i.e. in the case
where Ja =0).

The form of the second term (correction) is legitimate since it must
exhibit the metric covariant variation that corresponds to the parallel
transported variable vector, in contrast to Riemannian geometry. Thus,
the EGR conoids C±

EGR, which will be used hereinafter, do not exactly
coincide with the Riemannian conoids C±.

§1.2. The constant-curvature space in the EGR Theory

§1.2.1. Definitions

In the Riemannian framework, it is well known that the four-dimensional
space-time metric with constant curvature is

Rabed = K
(
gae gbd − gad gbe

)
(1.23)

with

K =
R

12
, (1.24)

where R is the constant curvature scalar. If K = λ
3
, where λ is the

cosmological constant, the constant-curvature Riemannian manifold V4

is the so-called Einstein space (see, for instance, the explanation given
by L.Borissova and D.Rabounski [9], formulae 5.33–5.34). In this case,
one writes

Gab = Rab = λgab . (1.25)

§1.2.2. The Einstein space in the EGR representation

In the EGR formulation, as we have seen,

REGR = R −
1
3

(

∇e Je +
1
2

J2

)

,

and while keeping R constant, we see that when Ja = const, we are
guaranteed that REGR is also constant. With this choice, inspection
shows that the symmetries of the EGR curvature tensors are identical to
the Riemannian ones, and that the EGR second-order curvature tensor
(Rab)EGR is now symmetric.
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If we wish to define the EGR equivalent to the Einstein space, we
must take into account the energy-momentum tensor of the persistent
background field, which now reduces to the symmetric expression

1
κ

gab(R
cdRcd)EGR . (1.26)

In the EGR field equations when substance is absent, this term be-
comes purely geometric

gab(R
cdRcd)EGR . (1.27)

From the EGR Einstein tensor (1.5), we can then infer the new EGR
second-order curvature tensor by grouping all remaining terms into the
right hand side of the field equations (1.7), and we find the symmetric
EGR second rank curvature tensor as

(Rab)EGR = gab λEGR (1.28)
with

λEGR = 3KEGR = −
1
4

[
1
2

(

R −
1
6

J2

)

− (RcdRcd)EGR

]

, (1.29)

where the last term of the right-hand side is assumed to be nearly con-
stant. This equation, (1.28), can be considered as representing the EGR
formulation of the classical Einstein space.

This result closely matches our earlier statement where the prevailing
term 1

6 gab J2 (see [6], formula 3.25) was regarded as generalizing the
regular Riemannian term gabλ, when the persistent field is discarded.

This derivation allows one to emphasize the arbitrary introduction of
the long-debated cosmological term λgab within the Riemannian phys-
ics, whereas the EGR theory provides a natural justification for its mere
existence.

We will thus simply define the EGR space-time metric of a constant
curvature K as

(Rabed)EGR = KEGR

(
gae gbd − gad gbe

)
. (1.30)

Chapter 2. Theory of Varied Fields

§2.1. Linear differential operations in the EGR framework

§2.1.1. Definitions

The varied field theory, as put forward by Lichnérowicz [10], relies on
the infinitesimal finite variation of the metric tensor gab which defines
a new tensor

δgab = hab , (2.1)
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δgab = −gacgbd hcd = −hab . (2.2)

This fundamentally differs from the regular linearized gravitation
theory which is based on the slight deviation

gab = ηab + hab , hab � 1 ,

and where hab is (loosely) regarded as a tensor defined in a flat back-
ground space-time. By contrast, the variation (2.1) takes place in the
chosen manifold, and it determines the varied connections and curvature
tensors which retain the same properties as their generic quantities. By
doing so, the corresponding finite variations can adequately fit in the
quantization process. Before detailing those derivations, we will need
first to define some differential operations.

§2.1.2. The generalized EGR Laplacian

On the oriented manifold M of class Ch+1 (always equipped with the
metric gab), we consider the second-order linear differential operator
ΔEGR on the p-tensors, such that

(ΔEGR T )a1...ap
= −Db Db Ta1...ap

= −gbc Db Dc Ta1...ap
. (2.3)

This operator transforms any Ck+2 tensor (where 06 k6h−2) into
a Ck tensor.

Let now dEGR and δEGR denote, respectively, the EGR exterior dif-
ferential, and the EGR co-differential operators acting on forms.

The EGR differential operator dEGR is built as the anti-symmetrized
EGR covariant derivative and it generalizes the Riemannian curl oper-
ator

(dEGR F )abc = Da Fbc + Dc Fab + Db Fca .

The EGR co-differential operator δEGR generalizes the Riemannian
divergence operator

(δEGR F )b = DaFab .

In the case of anti-symmetric tensors we make use of the EGR Lapla-
cian in the sense of Georges de Rham :

ΔEGR T = (dEGRδEGR + δEGRdEGR) T . (2.4)

Then ΔEGR commutes with dEGR and δEGR, since d2
EGR =δ2

EGR =0.
Explicitly, the Laplacian ΔEGR is expressed with covariant derivatives
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as follows

(ΔEGR T )a1...ap = −Dc Dc Ta1...ap +
1

(p − 1)!
εdb2...bp

a1...ap
Rde T e

b2...bp
−

−
1

(p − 2)!
εdeb2...bp

a1...ap
Rdcef T cf

b2...bp
, (2.5)

where εdb1...b2
a1...ap

and ε
deb2...bp
a1...ap are the generalized Kronecker tensors which

take on the numerical values:

+1, if all indices a1 . . . ap are distinct, and if the substitution s
which makes b1 . . . to a1 . . . is pair;

−1, if indices a1 . . . ap are all distinct for odd s;

or 0, for all other cases.

Generally speaking, if we denote by C a linear operator field on
tensors, and B a linear application field on the same tensors, we define
the EGR differential operator

LT = ΔEGR T + Bb Db T + C T (2.6)

which transforms any tensor of class Ck+2 into a tensor of class Ck.
The adjoint differential operator is thus defined by

L∗V = ΔEGRV – DbB
∗bV + C∗V

with
B∗b = −Bb, C∗ = C − DbB

b.

The EGR Laplacian of an arbitrary tensor T defined by (2.5) has
the following properties:

a) It is self-adjoint;

b) It commutes with all contractions and with all index transposi-
tions.

Furthermore, if T has zero covariant derivative,

ΔEGR(T ⊗ V ) = T ⊗ ΔEGRV

for any 2-tensor T and vector A, we have

δΔEGR T = ΔEGR δT , DΔEGR A = ΔEGR DA .

Therefore, for an anti-symmetric tensor T of rank 2, we have

(ΔEGR T )ab = −Dc Dc Tab + (Rd
a)EGR Tdb +

+ (Rd
b )EGR Tad − 2(Racbe)EGR T ce. (2.7)

This last relation will be useful in discussing further results related
to symmetric propagators.
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§2.2. EGR curvature tensor variations

§2.2.1. The EGR curvature 4th-rank tensor variation

Let us consider the EGR manifold that reduces to the EGR Einstein
equations

(Rab)EGR = gab λEGR (2.8)

with the following obvious constraint

δ(Rab)EGR = λEGR hab . (2.9)

We are now going to evaluate the corresponding variations of the
general connection

δΓc
ab = W c

ab (2.10)
so, we first calculate

δVabd =
1
2

(
∂a hbd + ∂b had − ∂d hab

)
, (2.11)

δVabd =
1
2

(
Da hbd + Db had − Dd hab

)
+ hde Γe

ab , (2.12)

hence

W c
ab = δgcd Vabd +

1
2

(
Da hc

b + Db hc
a − Dc hab

)
+ hc

e Γe
ab , (2.13)

that is

W c
ab =

1
2

(
Da hc

b + Db hc
a − Dc hab

)
+ hc

e Γe
ab − hc

d Γd
ab .

Eventually, we find

W c
ab =

1
2

(
Da hc

b + Db hc
a − Dc hab

)
. (2.14)

Now setting Wcab = gcd W d
ab, we have

Wcab =
1
2

(
Da hbc + Db hac − Dc hab

)
. (2.15)

The variation of the EGR tensor components (2.9) expressed with
the tensor Wcab is then given by

δ(Ra
bcf )EGR = Dc W a

bf − Df W a
bc . (2.16)

Let us now evaluate the varied tensors

δ(Rabcf )EGR = Habcf , δ(Rabcf )EGR = Habcf . (2.17)
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Since we are here in the EGR Einstein space-time picture, inspection
shows that all Riemannian symmetries are also satisfied by the EGR
tensor (Rabcf )EGR and equally hold for Habcf , i.e.

Habcf = Hbacf = −Habfc = Hcfab . (2.18)

If Ξ denotes the summation after circular permutation on indices,
this tensor also satisfies the identity

ΞHabcf = 0 (2.19)
and the Bianchi identity

ΞDeHabcf = 0 . (2.20)

Let Bacbf be an arbitrary tensor of the 4th rank; we introduce the
denotation 0Σ which acts on Bacbf as

0ΣBacbf = Bacbf + Bbfac − Bbcaf − Bafbc .

§2.2.2. Relation of the tensor hab with Rabcd

We first evaluate the tensor

Mabfg(h) = δ(Rabfg) (2.21)

which verifies (2.18–2.19), and where h ⇔ hab.
Let us then introduce the symmetric tensor Phked(h):

0ΣDdDk heh = DdDk hhe + DhDe hkd − DeDd hhk − DkDe hhd . (2.22)

We can show that

2Mabfg(h) = −Pabfg − hac(R
c ∙∙∙
∙bfg)EGR − hbc(R

∙c ∙∙
a ∙fg)EGR (2.23)

so that we can infer the components of another tensor Qabfg

Qabfg(h) = −Pabfg − hfc(R
∙∙c ∙
ab ∙g)EGR − hgc(R

∙∙∙c
abf ∙)EGR (2.24)

uniquely expressed as a function of both the hab and the EGR curvature
tensor (Rabcd)EGR.

After a lengthy tedious calculation, one finds

Qabfg(h) = Mabfg(h) + gac gbh gfk gge δ(Rchke)EGR(h) . (2.25)

The quantity Qabfg(h) will play a major role in view of quantizing
the EGR gravitational field.
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We will also need to evaluate Qabfg(DA) with h =DA, where the
extended Lie derivative of the metric tensor with respect to the arbitrary
vector A is given according to Marquet [11]:

(DA)ab = Ab;a + Aa;b + gab

(
gik Dc gik Ac

)
. (2.26)

Let us denote by L the extended Lie derivative operator and we write

DA = LA g . (2.27)

Respectively, Mabfg(DA) can be shown to be the EGR Lie derivative
of the vector (Rabfg)EGR with respect to the vector A. We have

Mabfg(DA)=LA(Rabfg)EGR = Ad Dd(Rabfg)EGR + 0ΣDaAd(Rd ∙ ∙ ∙
∙bfg)EGR .

Hence, for the tensor Qabfg (2.25), we have

Qabfg(DA)= 2Ad Dd(Rabfg)EGR +0Σ(DaAd−DdAa)(Rd∙∙∙
∙bfg)EGR (2.28)

and after a further tedious calculation, we obtain

Dk Qabfg(h) = 2δDk(Rabfg)EGR +

+ 0Σ(Da hdk − Dd hak)(Rd ∙ ∙ ∙
∙bfg)EGR − 0Σ had Dk (Rd ∙ ∙ ∙

∙bfg)EGR . (2.29)

§2.2.3. Second-order curvature tensor variation

The relevant variation of the EGR tensor (Rab)EGR is

δ(Rbf )EGR = Dd W d
bf − Df W d

db . (2.30)

Taking account of (2.15), one may write

2δ(Rab)EGR = gde Dd

(
Da hbe + Db hae − De hab

)
– Da Db h , (2.31)

where we set
h = gde hde .

Considering the Ricci identity within the EGR framework, applied
to the tensor hab

he
b′,ea – he

b′,ae = (Rad)EGR hd
b − hed(Raebd)EGR ,

one deduces for (2.31):

2δ(Rab)EGR = −De De hab + (Rd
a)EGR hdb + (Rd

b )EGR had –

− 2(Raebd)EGR hed +
(
Da De he

b + Db De he
a − Da Db h

)
. (2.32)
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And, together with formula (2.26), this leads to

2δ(Rab)EGR = ΔEGR hab + (Dk)ab , (2.33)

where the vector k(h) has components

ka(h) = Dd hd
a −

1
2

Da h . (2.34)

From (2.33), the contraction yields

gde δ(Rde)EGR =
1
2

ΔEGR h + Da ka(h) . (2.35)

For the EGR Einstein space (1.28), eventually holds the following
relation

Da

[

δ(Rab)EGR –
1
2

gab ged δ(Red)EGR

]

= λEGR kb(h) (2.36)

which could be formally derived from the variation of the conservation
identity of the EGR Einstein tensor (1.5) reduced here to its symmetric
version. This is an important result, as (2.36) precisely matches the
equivalent Riemannian relation derived by Lichnérowicz.

Such an equivalence lends strong support to the EGR theory, thus
appearing as a legitimate generalization of the classical General Rela-
tivity in the varied field formulation.

With the EGR symmetric second-order curvature tensor variation
still being bound to the condition

δ(Rab)EGR = λEGR hab , (2.37)

inspection shows that this equation is invariant upon the EGR gauge
transformation

h′ → h + DA , (2.38)

where A is, as usual, an arbitrary infinitesimal vector. This is cer-
tainly true, provided the vector Ja is constant, which is indeed the case
according to (2.37).

Lemma (Lichnérowicz)

For the EGR Einstein space, we have

(ΔEGR − 2λEGR) Ab = − (Da Da Ab + λEGR Ab) .

As a result of Lichnérowicz’ lemma, a formal calculation leads to

(ΔEGR – 2λEGR) A = k(h)



Patrick Marquet 175

so, with the constraint k(h)= 0 which is the initial condition, we have

(ΔEGR – 2λEGR) A = 0 ,

and we then eventually obtain the field equations for h which take the
form

(ΔEGR – 2λEGR ) h = 0 . (2.39)

Chapter 3. Quantizing Varied Fields

§3.1. Tensor propagators

§3.1.1. Displacement bi-tensors

Tensor propagators have been introduced in order to generalize the
scalar propagator on a curved manifold. Indeed, in an Euclidian space,
the quantum field theory makes an intensive use of Fourier’s transform.
In a curved space-time, this transform no longer applies and there-
fore an alternate theory developed by Lichnérowicz, can be adequately
substituted, which is based on the so-called concept of displacement
bi-tensors.

On the differentiable manifold M, we consider a point x′ located in
the neighbourhood of another point x. Along the EGR geodesic connect-
ing x′ to x, can be defined a displacement which represents a canonical
isomorphism (base-independence) of the space Tx at x tangent to the
manifold onto the tangent space Tx′ at x′.

The free bases ea(x) and ec′(x′) are attached to those neighbour-
hoods. The relevant isomorphism therefore defines a bi-tensor denoted
by t which is named displacement tensor and whose components are
labeled tc

′

a .
For further analysis and subsequent properties, it is useful to refer

to our earlier publication [12].
In the foregoing, we will restrict our study to massless fields only.

§3.1.2. Elementary kernels and propagators

In the most general manner, the definition of any commutator requires
the analytic description of the isotropic EGR conoids (see §1.1.2).

For this, always on the manifold M, we denote by (Cx′)EGR the
characteristic EGR conoid with apex x′ and wherefrom are generated
the EGR geodesics.

This regular point x′ belongs to the compact subset Ω, neighbourhood
homeomorphic to the Euclidean open ball, that is, the tangent vector
space Tx at x′.
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Herein the subset Ω exhibits three regions: future I+ of x′, past I−

of x, and elsewhere. The first two regions characterize two temporal
domains (C±

x′)EGR, (compact sets), which correspond to the subdivision
of (Cx′)EGR in two half conoids, one oriented towards the future, the
other towards the past.

With the following considerations being purely local, it can be shown
that there exist two p-tensors satisfying

L∗
xE(p)±(x, x′) = δ(p)(x, x′) . (3.1)

The E(p)±(x, x′) are two elementary solutions called elementary ker-
nels of L on Ω × Ω, and which, for each x′, do have their supports
respectively in I+(x′) and I−(x′).

One may then define in (Cx′)EGR the EGR p-tensor

E(p)(x, x′) = E(p)+(x, x′) − E(p)−(x, x′) (3.2)

which is by definition the tensor propagator associated with the oper-
ator L. In the Minkowski space, the scalar propagator E(0) reduces to
the Jordan-Pauli propagator denoted by D.

§3.1.3. Propagators associated with the operator ΔEGR+ μ

Letting μ be a constant, the operator ΔEGR + μ acts on anti-symmetric
tensors of rank p.

Anti-symmetrizing the kernels E(p)±, we obtain two unique solutions
G(p)± (p-forms), which satisfy for each x′ and x, the partial derivative
equations

[
(Δx)EGR + μ

]
G(p)±(x, x′) = δ(p)(x, x′) , p = 0, 1, . . . , n

with support respectively in and on C+

x′ and C−

x′ .
Likewise, for each x, these kernels define two solutions near x′

within Ω [
(Δx′)EGR + μ

]
G(p)±(x′, x) = δ(p)(x

′, x) .

The difference

G(p)(x, x′) = G(p)+(x′, x) − G(p)−(x′, x) (3.3)

defines the anti-symmetric propagator associated with the operator
ΔEGR + μ, which is a solution of

[
(Δx)EGR + μ

]
G(p)(x, x′) = 0 . (3.4)
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By symmetrizing the elementary kernels E(2)±(x′, x) (limited to or-
der 2) related to our operator, one notes the emergence of two symmetric
kernels K±(x′, x) which are symmetric 2-tensors satisfying at x

[
(Δx)EGR + μ

]
K±(x′, x) = t δ(x, x′) (3.5)

with t having the components

tabc′d′ = tac′ tbd′ + tad′ tbc′ , (3.6)

which means that the symmetrization operation was applied to the 2-
tensor. We therefore call the symmetric propagator related to ΔEGR + μ
the symmetric 2-tensor defined by

K(x, x′) = K+(x′, x) − K−(x′, x) . (3.7)

§3.2. Commutation rules

§3.2.1. Electromagnetic field in the Minkowski space

The potential 1-form A induces an electromagnetic field F according to
the equations

F = dA , dA = Ab ∧ dxb. (3.8)

which are invariant under the gauge transformation

Ab −→ A′
b = Ab + ∂bU .

Classically, with our notations used so far, we express the commu-
tator for the potential in the form (see [13], formula 11.27)

[
A(x), A(x′)

]
= −

~
i

{
tD(x, x′)

}
, (3.9)

where ~= h
2π

, the mass term is characterized by μ =0, and the Jordan-
Pauli propagator D is related to the regular Laplace operator which
satisfies the following conditions

ΔA = 0 , δA = 0 . (3.10)

Taking this result into account, the commutator (3.9) is written

[
A(x), A(x′)

]
= −

~
i

{
G(1)(x, x′)

}
(3.11)

which leads, for the electromagnetic field F , to the commutator

[
F (x), F (x′)

]
= −

~
i
{dxdx′ G(1)(x, x′)} . (3.12)
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Short inspection shows that this commutator is compatible with the
regular Maxwell equations

dF = 0 , δF = 0 , (3.13)

and δA =0 once some initial conditions have been applied.

§3.2.2. Commutator for the varied EGR second-order curva-
ture tensor

By a strict analogy, we have the evident correspondence

ΔEGR h = 0 −→ A = 0 ,

k(h) = 0 −→ δA = 0 ,

so, we are led to adopt the commutator for h

[
h(x), h(x′)

]
=
G~
ic2

{
K(x, x′) − g(x)g(x′) G(0)(x, x′)

}
, (3.14)

where the propagators are related to the operator (ΔEGR – 2λEGR), and
g = gab dxa⊗ dxb.

§3.3. Quantization in the constant-curvature space

§3.3.1. Commutator for higher-order fields

In the Minkowski space with metric tensor ηab, we use here a system of
orthonormal basis. It is interesting to evaluate the commutator (3.14)
as applied to the field h, for the tensor Habcd (2.17) which verifies the
equations (2.18–2.19).

The commutator for Habcd is classically given by
[
Habcd(x), Hefgh(x′)

]
=

=
G~
4ic2

{(
0Σ ηbf ∂e∂a

)(
0Σ ηdh ∂g∂e

)
+
(
0Σ ηdf ∂e∂c

)(
0Σ ηbh ∂g∂a

)
−

−
(
0Σ ηfh ∂e∂g

)(
0Σ ηbd ∂c∂a

)}
D(0)(x, x′) . (3.15)

In an arbitrary basis system and after changing the indices, a lengthy
calculation shows that the term in the brackets can be split up into two
following parts. The first part is

0ΣDg′ De′
0ΣDc Da

[
tbf ′ tdh′ + tdf ′ tbh′

]
D(0) , (3.16)

i.e.
Q(x′)Q(x)K(x, x′) , (3.17)
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where Qx is the operator Q defined above, acting on the tensors of rank
2 and which is defined at the point x.

The second part is

0ΣDg′ De′
0ΣDc Da

(
gf ′h′ gbd

)
D(0)(x, x′) , (3.18)

i.e.
Qx′ Qx g(x)g(x′)D(0) . (3.19)

Eventually, we obtain for an arbitrary basis

[
H(x), H(x′)

]
=
G~
4ic2

Qx′ Qx

{
K(x, x′)− g(x)g(x′)D(0)(x, x′)

}
, (3.20)

where D(0) and K are respectively the scalar and symmetric propaga-
tors of rank 2 associated with the operator ΔEGR.

§3.3.2. The EGR constant-curvature space

We now consider a curved manifold specialized to the EGR space with
a constant curvature as defined in (1.30), in which case we make use of
the results of §2.2.

From the derived relation (2.28), one infers

Q(DA) = 0 (3.21)

for any vector A. Moreover, from (2.29), for any symmetric tensor h,
we have

ΞDk Qabfg(h) = 0 . (3.22)

Consider the commutator (3.14): using the operators Qx and Qx′

and taking account of (3.21), we get

[
Q h(x), Q h(x′)

]
=
G~
ic2

Qx Qx′

{
K(x, x′) – g(x)g(x′)G(0)

}
. (3.23)

Setting
Habfg(h) =

1
2

Qabfg(h)

which has the same properties, we obtain the EGR commutator

[
H(x), H(x′)

]
=
G~
4ic2

Qx Qx′

{
K(x, x′) – g(x)g(x′)G(0)

}
, (3.24)

which is formally the extension of the commutator (3.20) established
for any arbitrary basis, in the Minkowski space.

Thus, the theory elaborated for the Minkowski space has been suc-
cessfully generalized to the EGR constant-curvature space.
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Conclusion. In the previous exposition, we have only sketched the
full theory of Lichnérowicz which actually thoroughly covers the massive
field commutators among which the Fierz commutators (spin 2 fields)
are formally generalized to the Riemannian Einstein spaces.

Generally speaking, the definition of commutators leads to a physical
description of the quantized varied gravitational field represented by a
4th-rank tensor.

The important work of Lichnérowicz has proven essential for the
initial knowledge of this Riemannian quantization technique even if it
is restricted to a constant-curvature space.

Performing a similar derivation within the extended Einstein space
explicitly shows that the EGR field 4th-rank tensor, when varied, fits
in the same quantization pattern.

In addition, the EGR Einstein space necessarily implies the natu-
ral existence of a generalized cosmological constant which is arbitrarily
introduced in the Riemannian framework.

This natural constant, however, remains a particular case, since in
the EGR theory, such a cosmological term is variable as it is intrinsically
part of the relevant geometry inherent to the theory.

All these tend once more to confirm that the extended General Rel-
ativity — the EGR theory suggested in [6] — is a viable model that
offers and justifies broad new perspectives in physics.
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Bulletin de la Société Mathematique de France, 1964, tome 92, 11–100.

5. De Witt B. S. Invariant Commutators for the Quantized Gravitational Field.
Institute of Field Physics, Chapel Hill (North Carolina, USA), 1959.

6. Marquet P. The EGR theory: an extended formulation of General Relativity.
The Abraham Zelmanov Journal, 2009, vol. 2, 148–170.

7. Marquet P. An extended theory of General Relativity unifying the matter-
antimatter States. Applied Physics Research, 2011, vol. 3, no. 1, 60–75.

8. Marquet P. Behaviour of the EGR persistent vacuum field following the Lich-
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tut des Hautes Etudes Scientifiques, Paris, Publications mathématiques no. 10.
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