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Abstract: In this work, we outline a new complementary model
of the relativistic theory of an inhomogeneous, anisotropic universe
which was first very extensively proposed by Abraham Zelmanov to
encompass all possible scenarios of cosmic evolution within the frame-
work of the classical General Relativity, especially through the devel-
opment of the mathematical theory of chronometric invariants. In
doing so, we propose a fundamental model of matter as an intrinsic
flexural geometric segment of the cosmos itself, i.e., matter is modelled
as an Eulerian hypersurface of world-points that moves, deforms, and
spins along with the entire Universe. The discrete nature of matter is
readily encompassed by its representation as a kind of discontinuity
curvature with respect to the background space-time. In addition, our
present theoretical framework provides a very natural scheme for the
unification of physical fields. An immediate scale-independent partic-
ularization of our preliminary depiction of the physical plenum is also
considered in the form of an absolute monad model corresponding to
a universe possessing absolute angular momentum.
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Dedicated to Abraham Zelmanov

§1. Introduction. The relativistic theory of a fully inhomogeneous,
anisotropic universe in the classical framework of Einstein’s General
Theory of Relativity has been developed to a fairly unprecedented,
over-arching extent by the general relativist and cosmologist Abraham
Zelmanov [1]. The ingenious methodology of Zelmanov has been pro-
foundly utilized and developed in several interesting physical situations,
shedding further light on the intrinsic and extensive nature of the clas-
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sical General Relativity as a whole (see [2]).
By the phrase “classical General Relativity”, we wish to emphasize

that only space-time and gravitational fields have been genuinely, cohe-
sively geometrized by the traditional Einsteinian theory. Nevertheless,
the construction of the mathematical theory of chronometric invariants
by Zelmanov enables one to treat General Relativity pretty much in the
context of some kind of four-dimensional continuum mechanics of the
very substance (plenum) of space-time geometry itself.

We factually note, in passing, that several independent theoretical
approaches to the geometric unification of space-time, matter, and phys-
ical fields, in both the extensively classical sense and the non-classical
sense, have been constructed by the Author elsewhere (for instance,
see [3] and the bibliographical list of the Author’s preceding works —
diverse as they are — therein).

In the present work, we are singularly concerned with the method-
ology originally outlined by Zelmanov. Nevertheless, fully acquainted
with the powerful depth, elegance, and beauty of his work, we shall
still present some newly emerging ideas by first-principle construction,
as well as some well-established understandings afresh, while uniquely
situating ourselves in the alleyway wherefrom both the cosmos and the
classical General Relativity are insightfully envisioned by Zelmanov.

As such, we shall theoretically fill a few gaps in the fabric of the
classical General Relativity in general, and of Zelmanov’s methodol-
ogy in particular, by proposing a fundamental hydrodynamical model
of matter, so as to possibly substantiate the material structure of the
observer in common with the preferred, stable cosmic reference frame
with respect to which the observer is at rest, i.e., one that co-moves,
co-deforms, and co-rotates with respect to the entire Universe.

Indeed, we shall proceed first by geometrizing matter and discovering
a natural way to reflectively superimpose the small-scale picture upon
the entire Universe, yielding a unified description of the observer and
the cosmos.

In the very general sense (far from the usual homogeneous, isotropic
cosmological situations), we may note at this point that not all observers
can automatically be qualified as fundamental observers, i.e. “observa-
tional monads”, with respect to whose observation the structure of the
Universe intrinsically appears the way it is observed by them.

Such, of course, is true also for observers assuming a homogeneous,
isotropic universe and observing it accordingly. However, in certain
cases incorporating, e.g., the absolute rotation of the universe, the prob-
lem of true interiority (and structural totality) arises in the sense that
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we can no longer recognize certain innate properties of the universe
in the reference frames specific to homogeneous, isotropic models only.
Such frames may be slowly translating and deforming to keep them-
selves at the natural expansive rate of the universe, but in the presence
of self-rotation (intrinsic angular momentum), a physical system is quite
something else to be accounted for in itself. For, if certain elementary
particles (as we know them) are truly elementary, we shall know the
total sense of observation of the Universe also from within their (com-
mon) interior and ultimately discover that, irrespective of scales, the
Universe is self-contained in their very existence.

Now, recalling that which lies at the heart of the theory of chrono-
metric invariants, we may posit further that the interior (and the total
possible exterior) of the Universe can only be known by a rather ad-
vanced non-holonomic observer, i.e., one who is not merely “incidental”
to the mesoscopic scale of (seemingly homogeneous) ordinary things, but
one who builds his system of reference with respect to the interior and
exterior of things in the required extreme limits, i.e., by rather direct in-
depth cognition of the logically self-possible meta-Universe, beyond any
self-limited experimental set-up. In other words, the totality of the laws
of cognition is intrinsic to such an observer endowed with a “syntactical
totality of logical operators” (a whole contingency of self-reflexive log-
ical grammar). This, in turn, necessarily belongs to the interior of the
directly observable (perceptual) Universe. One can then see how this
substantially differs from a mere “bootstrap” universe.

Hence, regarding observation, our “anthropic principle with further
self-qualification” is true only for observers dynamically situating them-
selves in certain unique non-holonomic frames of reference bearing the
specific characteristics of motion of very elementary microscopic objects
(such as certain elementary particles) and macroscopic objects exhibit-
ing natural chronometricity with respect to the whole Universe (such
as certain spinning stars, planets, galaxies, and metagalaxies). This,
then, would be true for individual observers as well as an aggregate of
common observers — such as those situated on a special rotating (plan-
etary) islet of mass — in their own unique (“universally preferred”)
non-holonomic coordinate systems.

Such observers are truly situated at the world-points of the respec-
tive Eulerian hypersurfaces (representing matter) in common with the
entire non-holonomic, inhomogeneous, anisotropic Universe. This is be-
cause, while “inhering” in matter itself, they automatically possess all
the geometric material configurations intrinsic to both matter itself and
the entire Universe.
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In our theory, as we shall see, the projective chronometric struc-
ture plays the role of the geometrized non-Abelian gauge field strength.
Hence, any natural extension of the study will center around the corre-
sponding emphasis that the inner constitution of elementary particles
cannot be divorced from chronometricity (the way it is hydrodynam-
ically geometrized here). This, like in the original case of Zelmanov,
gives one the penetrating confidence to speak of elementary particles,
in addition to large-scale objects, purely in the framework of the chrono-
metric General Relativity, as if without having to mind the disparities
involving scales (of particles and galaxies).

Here, chronometricity is geometrized in such a way that co-substan-
tial motion results, both hydrodynamically and geometrically, from the
fundamental properties of the extrinsic curvature of the material hyper-
surface (i.e., matter itself).

In addition, the Yang-Mills curvature is generalized by the presence
of the asymmetric extrinsic curvature, as in [5]. Only in pervasive flat-
ness does it go into the usual Yang-Mills form of the Standard Model
(whose background space-time is Minkowskian). We shall not employ
the full form of the particular Finslerian connection as introduced in [3],
but only the respective metric-compatible part, with the corresponding
geodesic equation of motion intrinsically generating the generally co-
variant Lorentz equation.

Hence, while encompassing the elasticity of space-time, we shall fur-
ther advance the notion of a discontinuous Eulerian hypersurface such
that it geometrically represents matter and chronometricity at once, and
such that it may be applied to any cosmological situation independently
of scales.

Indeed, as we shall see, the Machian construction (see §5 herein)
is a special condition for “emergent inertia”, without having to invoke
both Newtonian absolute (external) empty space and a distant refer-
ence frame. Rather, the whole process is meant to be topologically
scale-independent. An alternative objective of the present approach,
therefore, is such that the structure of General Relativity, when de-
veloped (generalized) this way, can apparently meet that of quantum
theory in a parallel fashion.

§2. The proposed geometrization of matter: a cosmic monad.
Let us consider an arbitrary orientation of a mobile, spinning hypersur-
face C3(t)= ∂Σ4 as the boundary of the world-tube Σ4 of geodesics in
the background Universe M4. Denoting the regular boundary by B3(t)
and the discontinuity hypersurface cutting through Σ4 by Υ, we see
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that C3(t)=B3(t)∪Υ. We emphasize that C3(t) is a natural geometric
segment of M4, i.e., it is created purely by the dynamics of the intrinsic
(and global) curvature and torsion of M4. This is to the extent that the
unit normal vector with respect to C3(t) is immediately given by the
world-velocity uα(s) along the world-line s.

We call C3(t) a monad, i.e., a substantive Eulerian structure of mat-
ter. As we shall see, this dynamical monad model is fully intrinsic to the
fabric of space-time, i.e., inseparable from (not external to) the intrinsic
structure of the Universe, thereby allowing us to incorporate the sub-
sequent geometrization of matter (and material fields) into Einstein’s
field equation.

Our substantial depiction of matter filling the cosmos also implies the
wave-like nature of the hypersurface C3(t), for the velocity field of the
points of C3(t) — representing individual group particles — is no longer
singly oriented. This allows us to project the fundamental material
structure pervasively outward — onto the Universe itself. Consequently,
this model readily applies to all sorts of observers, other than just a co-
moving one (whose likeness we shall especially refer to as the “purely
monad observer”).

As we know, the infinitesimal world-line, along which C3(t) moves,
is explicitly given by the metric tensor gαβ(x) of M

4 as

ds2 = gαβ dx
αdxβ = g00 dx

0dx0 + 2g0idx
0dxi + gik dx

idxk =

= c2dτ2 − dσ2, (2.1)

where we denote the speed of light as c. The proper time, the generally
non-holonomic, evolutive spatial segment (the hypersurface segment),
the metric tensor of the hypersurface, and the linear velocity of space
rotation (i.e., of material spin) are respectively given by∗

dτ =
g0αdx

α

c
√
g00

=
√
g00 dt+

g0i
c
√
g00

dxi =
√
g00 dt− 1

c2
vidx

i, (2.2)

dσ =
√
hik dxidxk , (2.3)

hik = −gik +
g0ig0k
g00

= −gik +
1

c2
vivk , (2.4)

vi = −c
g0i√
g00

. (2.5)

∗Einstein’s summation convention is utilized with space-time Greek indices run-
ning from 0 to 3 and projective material-spatial Latin indices from 1 to 3.



Indranu Suhendro 107

Denoting the unit normal vector of the material hypersurface by Nα,
we see that Nα=uα= dxα

ds , and especially that

Ni = ui = −1

c
vi . (2.6)

In a simplified matrix representation, we therefore have

gαβ =

(
g00 Ni

√
g00

Ni
√
g00 −hik +NiNk

)
. (2.7)

Now, the fundamental projective relation between the background
space-time metric gαβ(x) and the global material metric hik(x, u) is
readily given as

gαβ = −hαβ + uαuβ , (2.8)

where, with f (vi, dt)→ vif (dt) and f
(
vi,

∂
∂t

)
→ vif

(
∂
∂t

)
,

hαβ =
∂Y i

∂xα

∂Y k

∂xβ
(−gik) , (2.9)

dY i = dxi + f (vi, dt) , (2.10)

∂

∂Y i
=

∂xα

∂Y i

∂

∂xα
=

∂

∂xi
+ f

(
vi,

∂

∂t

)
, (2.11)

hα
β = −δαβ + uαuβ , hα

γ h
γ
β = δαβ − uαuβ , (2.12)

hi
α = hβ

α

∂Y i

∂xβ
= −∂Y i

∂xα
, (2.13)

hα
i h

i
β = δαβ − uαuβ , hi

αh
α
k = δik , (2.14)

hαβ u
β = 0 , hi

αu
α = 0 . (2.15)

Let us represent the natural basis vector of M4 by ḡα and that of
C3(t) by ω̄i. We immediately obtain the generally asymmetric extrinsic
curvature of C3(t) through the inner product

Zik =

〈
u,

∂ω̄i

∂Y k

〉
(2.16)

i.e.,
Zik = −uα∇kh

α
i = −hα

i h
β
k ∇β uα , (2.17)

where ∇ denotes covariant differentiation, i.e., for an arbitrary tensor
fieldQab...

cd...(x) and metric-compatible connection form Γa
mk(x), presented
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herein with arbitrary indexing,

∇kQ
ab...
cd... =

∂Qab...
cd...

∂xk
+ Γa

mkQ
mb...
cd... + Γb

mkQ
am...
cd... + . . .

− Γm
ckQ

ab...
md... − Γm

dkQ
ab...
cm... − . . . , (2.18)

Γa
bc =

1

2
gam

(
∂gmb

∂xc
− ∂gbc

∂xm
+

∂gcm
∂xb

)
+ Γa

[bc] −

− gam
(
gbnΓ

n
[mc] + gcnΓ

n
[mb]

)
, (2.19)

DQab...
cd...

ds
= ue ∇eQ

ab...
cd... . (2.20)

Henceforth, round and square brackets on indices shall indicate sym-
metrization and anti-symmetrization, respectively.

Hence, we see that the extrinsic curvature tensor of the material
hypersurface is uniquely expressed in terms of the four-dimensional ve-
locity gradient tensor given by the expression

ϕαβ = ∇β uα , (2.21)

i.e.,
Zik = −hα

i h
β
k ϕαβ . (2.22)

This way, we have indeed geometrized the tensor of the rate of ma-
terial deformation Θαβ and the tensor of material vorticity ωαβ , as can
be seen from the respective symmetric and anti-symmetric expressions
below:

Z(ik) = −hα
i h

β
k Θαβ , Z[ik] = −hα

i h
β
k ωαβ , (2.23)

where

Θαβ =
1

2

(
∇β uα+∇αuβ

)
, ωαβ =

1

2

(
∇β uα−∇αuβ

)
. (2.24)

Meanwhile, noting immediately that

∇kh
α
i = −Ziku

α, (2.25)

we obtain the following relation:

∂hα
i

∂Y k
= Ωp

ikh
α
p − Γα

βγ h
β
i h

γ
k − Ziku

α. (2.26)

Both Ωp
ik (Y

p) of C3(t) and Γα
βγ(x) of M

4 are generally asymmetric,
non-holonomic connection forms. We see that they are related to each



Indranu Suhendro 109

other through the following fundamental relations:

Ωp
ik = hp

α

∂hα
i

∂Y k
− hp

αΓ
α
βγ h

β
i h

γ
k , (2.27)

Γα
βγ =hα

i

∂hi
β

∂xγ
−hα

pΩ
p
ikh

i
βh

k
γ+Zikh

i
βh

k
γu

α+uα ∂uβ

∂xγ
−Zi·

·kh
α
i h

k
γuβ . (2.28)

The associated curvature tensor of C3(t), Ri· · ·
·jkl(Ω

i
jl), and that of M4,

Rα· · ·
·βργ(Γ

α
βγ), are then respectively given by

Ri· · ·
·jkl =

∂Ωi
jl

∂Y k
−

∂Ωi
jk

∂Y l
+Ωp

jlΩ
i
pk − Ωp

jkΩ
i
pl , (2.29)

Rα· · ·
·βργ =

∂Γα
βγ

∂xρ
−

∂Γα
βρ

∂xγ
+ Γτ

βγΓ
α
τρ − Γτ

βρΓ
α
τγ , (2.30)

where, as usual,(
∇l∇k −∇k∇l

)
Qab...

cd... =

= Rm···
·cklQ

ab...
md... +Rm···

·dklQ
ab...
cm... + · · · −Ra ···

·mklQ
mb...
cd... −

−Rb ···
·mklQ

am...
cd... − · · · − 2Γm

[kl]∇mQab...
cd... , (2.31)(

∇b∇a −∇a∇b

)
φ = −2Γc

[ab]∇c φ , (2.32)

where φ is an arbitrary scalar field.
At this point, we obtain the complete projective relations between

the background space-time geometry and the geometric material space.
The relations are as follows:

Rijkl = ZikZjl − ZilZjk + hα
i h

β
j h

ρ
kh

γ
l Rαβργ + Sαjklh

α
i , (2.33)

∇lZik −∇kZil = uαhβ
i h

ρ
kh

γ
l Rαβργ − 2Ωp

[kl]Zip + uαSαikl . (2.34)

In terms of the curvature tensor Ri· · ·
·jkl(Ω

i
jl) of C

3(t), and that of M4,
which is Rα· · ·

·βργ(Γ
α
βγ), with the segmental torsional curvature (incorpo-

rating possible analytical discontinuities as well) given by

Sα···
·ijk =

∂

∂Y j

(
∂hα

i

∂Y k

)
− ∂

∂Y k

(
∂hα

i

∂Y j

)
+ Γα

βγ h
β
i

(
∂hγ

j

∂Y k
−

∂hγ
k

∂Y j

)
. (2.35)

Now, we can four-dimensionally express the (generalized generally
covariant) gravitational force Fα, the spatial deformation Dαβ , and the
angular momentum Aαβ in terms of our geometrized material deforma-
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tion and material vorticity as follows:

Fα = 2c2uβωαβ , (2.36)

Dαβ = chµ
αh

ν
β Θµν , (2.37)

Aαβ = chµ
αh

ν
β ωµν , (2.38)

such that

Φαβ = chµ
αh

ν
β ϕµν = Dαβ +Aαβ , (2.39)

Dik = hµ
i h

ν
kΦ(µν) , (2.40)

Aik = hµ
i h

ν
kΦ[µν] . (2.41)

As a result, we obtain the geometrized dynamical relation

Rijkl = hα
i h

β
j h

ρ
kh

γ
l

(
Rαβργ+ϕαρϕβγ−ϕαγϕβρ

)
+ hα

i Sαjkl . (2.42)

Furthermore, let us introduce the Eulerian (substantive) curvature
of the material hypersurface which satisfies all the natural symmetries
of the curvature and torsion tensors of the background space-time as
follows:

Fijkl = hα
i h

β
j h

ρ
kh

γ
l Rαβργ + hα

i Sαjkl . (2.43)

We immediately see that

Fijkl = Rijkl −
1

c

(
DikDjl −DilDjk +AikAjl −AilAjk +

+DikAjl −DilAjk +AikDjl −AilDjk

)
, (2.44)

and, in addition, we also obtain the inverse projective relations

Rµνρσ −Rλνρσu
λuµ −Rµλρσu

λuν −Rµνλσu
λuρ −

−Rµνρλu
λuσ −Rλνκσu

λuκuµuρ −Rλνρκu
λuκuµuσ −

−Rµλκσu
λuκuνuρ −Rµλρκu

λuκuνuσ =

= hj
νh

k
ρh

l
σ

(
hi
µ(Rijkl−ZikZjl+ZilZjk)+Sµjkl−uµu

λSλjkl

)
, (2.45)

Rλµνρu
λ −Rλµκρu

λuκuν −Rλµνκu
λuκuρ =

= −hi
µh

k
νh

l
ρ

(
∇lZik −∇kZil + 2Ωp

[kl]Zip − Sλiklu
λ
)
. (2.46)

The complete geometrization of matter in this hydrodynamical ap-
proach represents a continuum mechanical description of space-time
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where the extrinsic curvature of any material hypersurface manifests
itself as the gradient of its velocity field. As such, the geometric field
equations simply consist in specifying the world-velocity of the moving
matter (especially directly from reading off the components of the fun-
damental metric tensor). The acquisition of individual particles, as a
special case of the more general group particles, is immediately at hand
when the material hypersurface enclosing a volumetric segment of the
cosmos is small enough, i.e., in this case the particles are ordinary in-
finitesimal space-time points translating and spinning in common with
the deforming and spinning Universe on the largest scale.

§3. Reduction to the pure monad model. Having formulated
the general structure of our scheme for the substantive geometrization
of matter (as well as physical fields, essentially by way of our preceding
works as listed in [3]) in the preceding section, we can now explicitly
arrive at the cosmological picture of Zelmanov for general relativistic
dynamics, i.e., the theory of chronometric invariants.

Much in parallel with Yershov [4], we may simply state the strong
monad model of the cosmos of Zelmanov as follows:

1) The Universe as a whole spins, inducing the spin of every elemen-
tary constituent in it;

2) The Universe is intrinsically inhomogeneous, anisotropic, and non-
holonomic, giving rise to its diverse elementary constituents (i.e.,
particles) on the microscopic scale, including its specific funda-
mental properties (e.g., mass, charge, and spin);

3) The small-scale structure of the Universe is simply holographic
(“isomorphic”) to the large-scale cosmological structure, thereby
rendering the Universe truly self-contained;

4) The linear velocity (or momentum) of any microscopic or macro-
scopic object is essentially induced by the global spin of the Uni-
verse, such that the individual motion of matter is none other than
the segmental motion of the Universe.

We shall refer to the above conventions as the pure monad model.
Consequently, we have the chronometrically invariant condition rep-

resented by
f
(
vi, dt

)
= 0 , (3.1)

f

(
vi,

∂

∂t

)
6= 0 . (3.2)

Therefore, with respect to the material hypersurface C3(t), we see
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that

hik = −gik +
g0ig0k
g00

= −gik +
1

c2
vivk , (3.3)

hik = −gik, hi
α = −δiα , (3.4)

vi = −c
g0i√
g00

, vi = −c
√
g00 g0i, (3.5)

v2 = viv
i = hik v

ivk , (3.6)

u0 =
√
g00 , u0 =

1
√
g00

, (3.7)

ui =
g0i√
g00

= −vi
c
, ui = 0 , (3.8)

dY i = dxi. (3.9)

In our theory, Zelmanov’s usual differential operators of chronomet-
ricity are given by

∂

∂Y i
=

∗∂

∂xi
=

∂

∂xi
+

1

c2
vi

∗∂

∂t
, (3.10)

∗∂

∂t
=

1
√
g00

∂

∂t
, (3.11)

∂

∂Y i

∗∂

∂t
−

∗∂

∂t

∂

∂Y i
=

∗∂2

∂xi∂t
−

∗∂2

∂t∂xi
=

1

c2
Fi

∗∂

∂t
, (3.12)

∂2

∂Y k ∂Y i
− ∂2

∂Y i∂Y k
=

∗∂2

∂xk ∂xi
−

∗∂2

∂xi∂xk
= − 2

c2
Aik

∗∂

∂t
. (3.13)

Here the three-dimensional gravitational-inertial force, material de-
formation, and angular momentum are simply given by the three-dimen-
sional chronometrically invariant components of the four-dimensional
quantities Fα, Dαβ , and Aαβ of the preceding §2 — in the case of van-
ishing background torsion — as follows:

Fi =
1

√
g00

(
∂w

∂xi
− ∂vi

∂t

)
, (3.14)

Dik =
1

2

∗∂hik

∂t
, Dik = −1

2

∗∂hik

∂t
, (3.15)

Aik =
1

2

(
∂vk
∂xi

− ∂vi
∂xk

)
+

1

2c2
(
Fivk − Fkvi

)
, (3.16)
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where the associated Zelmanov identities are

∂Aik

∂Y l
+

∂Akl

∂Y i
+

∂Ali

∂Y k
=

∗∂Aik

∂xl
+

∗∂Akl

∂xi
+

∗∂Ali

∂xk
=

= − 1

c2
(
AikFl +AklFi +AliFk

)
, (3.17)

∗∂Aik

∂t
=

1

2

(
∂Fi

∂Y k
− ∂Fk

∂Y i

)
=

1

2

(∗∂Fi

∂xk
−

∗∂Fk

∂xi

)
, (3.18)

and the gravitational potential scalar is

w = c2 (1−√
g00) . (3.19)

The symmetric chronometrically invariant connection of Zelmanov
can be given here by

∆i
kl =Ωi

(kl)+hip
(
hkqΩ

q
[pl]+hlqΩ

q
[pk]

)
=

1

2
hip

(
∂hpk

∂Y l
− ∂hkl

∂Y p
+
∂hlp

∂Y k

)
=

=
1

2
hip

(∗∂hpk

∂xl
−

∗∂hkl

∂xp
+

∗∂hlp

∂xk

)
=

=
1

2
hip

(
∂hpk

∂xl
− ∂hkl

∂xp
+
∂hlp

∂xk

)
+

1

c2
(
Di

kvl−Dklv
i+Di

l vk
)
. (3.20)

Note that while the extrinsic curvature tensor Zik is naturally asym-
metric in our theory (in order to account for geometrized material vor-
ticity), we might impose symmetry upon the material connection Ωp

ik

whenever convenient (or else we can associate its anti-symmetric part,
through projection with respect to the background torsion, with the
electromagnetic and chromodynamical gauge fields, as we have done,
e.g., in [3] and [5]).

Now, with respect to the geometrized dynamical relations of the
preceding section, we obtain

Rµνρσ = hj
νh

k
ρh

l
σ

(
hi
µ(Rijkl−ZikZjl+ZilZjk)+Sµjkl−uµu

λSλjkl

)
+

+uµXνρσ−uνXµρσ+uρYµνσ−uσYµνρ+uµuρJνσ−uµuσJνρ+

+uνuρKµσ−uνuσKµρ , (3.21)

where

Xαβγ =
R0αβγ√

g00
, Yαβγ =

Rαβ0γ√
g00

, (3.22)

Jαβ =
R0α0β

g00
, Kαβ =

Rα00β

g00
= −Jαβ . (3.23)
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These quantities, whose three-dimensional components may be link-
ed with Zelmanov’s various three-dimensional curvature tensors [1, 2],
appear to correspond to certain generalized currents.

Further calculation reveals that

Xµνρ + uνJµρ − uρJµν =

= −hi
µh

k
νh

l
ρ

(
∇lZik −∇kZil + 2Ωp

[kl]Zip − Sλikl u
λ
)
, (3.24)

Yµνρ =
2
√
g00√

g00 − 1

(
uνJµρ − uµJνρ

)
. (3.25)

Therefore, the immediate general significance of these currents lies in
the dynamical formation of matter itself with respect to the background
structure of the world-geometry (represented by M4).

§4. Hydrodynamical unification of physical fields. In this sec-
tion, we shall deal with the explicit structure of the connection form
underlying the world-manifold M4, as well as that of matter — the ma-
terial hypersurface C3(t), by recalling certain fundamental aspects of our
particular approach to the geometric unification of physical fields out-
lined in [3] and [5], which very naturally gives us the correct equation of
motion for a particle (endowed with structure) moving in gravitational
and electromagnetic fields while internally also experiencing the Yang-
Mills gauge field, i.e., as an intrinsic geodesic equation of motion given
by the following generalized metric-compatible connection form:

Γα
βγ = Γα

βγ(x, u) =
1

2
gαρ
(
∂gρβ
∂xγ

− ∂gβγ
∂xρ

+
∂gγρ
∂xβ

)
+

+
e

2mc2
(
Fβγu

α−Fα·
·βuγ−Fα·

·γ uβ

)
+Sα··

·βγ−gαρ
(
Sβργ+Sγρβ

)
. (4.1)

The anti-symmetric electromagnetic field tensor Fαβ is fully geo-
metrized through the relation

Fαβ = 2
mc2

e
Γλ
[αβ]uλ , (4.2)

whose interior structure is given by the geometrized Yang-Mills gauge
field [5], here in terms of the internal material coordinates of C3(t) as

F i
αβ = −2hi

λΓ
λ
[αβ] =

∂Ai
α

∂xβ
−

∂Ai
β

∂xα
+ i ĝ εi ···klA

k
αA

l
β + 2Z i·

·kA
k
[αuβ ]

, (4.3)

Fαβ =
mc2

e
F i
αβ ui , Ωi

[kl] =
1

2
i ĝ εi ···kl , (4.4)



Indranu Suhendro 115

where Ai
α =−hi

α is the gauge field strength (not to be confused with
the angular momentum), ĝ is a coupling constant, and εi ···kl is the three-
dimensional permutation tensor.

The material spin tensor Sα· ·
·βγ is readily identified here through the

anti-symmetric part of the four-dimensional form of the extrinsic cur-
vature ϕαβ (i.e., the material vorticity ωαβ) of M

4:

Sα· ·
·βγ = Sα·

·β uγ − Sα·
·γ uβ , (4.5)

Sαβ = ŝϕ[αβ] = ŝωαβ =
1

2
ŝ
(
∇β uα−∇αuβ

)
, (4.6)

where ŝ is a constant spin coefficient, which can possibly be linked to
the electric charge e, the mass m, and the speed of light in vacuum c,
and hence to the Planck-Dirac constant ~ as well, such that we can
express the connection form more compactly as

Γα
βγ =

1

2
gαρ
(
∂gρβ
∂xγ

− ∂gβγ
∂xρ

+
∂gγρ
∂xβ

)
+

+
e

2mc2
(
Fβγu

α − Fα·
·β uγ − Fα·

·γ uβ

)
+ 2Sα·

·β uγ . (4.7)

Therefore, owing to the fully intrinsic dynamics of the geometrized
physical fields located in M4, i.e.,

Duα

ds
= uβ∇β u

α = 0 , (4.8)

we see that the following condition is naturally satisfied:

Sαβ u
β = 0 (4.9)

in addition to the equation of motion

mc2
(
duα

ds
+∆α

βγ u
βuγ

)
= eFα·

·β uβ , (4.10)

where the usual connection coefficients are

∆α
βγ =

1

2
gαρ
(
∂gρβ
∂xγ

− ∂gβγ
∂xρ

+
∂gγρ
∂xβ

)
. (4.11)

Meanwhile, from §2, we note that

ϕαβ = ∇β uα = −hi
αh

k
βZik , (4.12)

Zik = −uα∇kh
α
i , (4.13)

ϕαβ u
α = 0 , ϕαβ u

β = 0 , (4.14)
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and so we (re-)obtain

Ωp
ik = hp

α

∂hα
i

∂Y k
− hp

αΓ
α
βγh

β
i h

γ
k , (4.15)

Γα
βγ = hα

i

∂hi
β

∂xγ
− hα

pΩ
p
ikh

i
βh

k
γ − ϕβγu

α + uα ∂uβ

∂xγ
+ ϕα·

·γ uβ , (4.16)

where the material connection of C3(t) can be explicitly expressed as

Ωi
kl =

1

2
hip

(
∂hpk

∂Y l
− ∂hkl

∂Y p
+

∂hlp

∂Y k

)
+

1

2
i ĝ εi· ··kl , (4.17)

or, in other words,

Ωi
kl =

1

2
hip

(
∂hpk

∂xl
− ∂hkl

∂xp
+

∂hlp

∂xk

)
+

+
1

c2
(
Di

kvl −Dklv
i +Di

l vk
)
+

1

2
i ĝ εi· ··kl . (4.18)

This way, we have also obtained the fundamental structural forms
corresponding to the immediate structure of our geometric theory of
chiral elasticity [6], which, to a certain extent, is capable of encompass-
ing the elastodynamics of matter in our present theory, as represented
by the material hypersurface C3(t).

§5. A Machian monad model of the Universe. We shall now
turn towards developing a particular pure monad model, i.e., one in
which the Universe possesses absolute angular momentum such that
matter arises entirely from the intrinsic inhomogeneity and anisotropy
emerging from the non-orientability and discontinuity of the very geom-
etry of the material hypersurface C3(t) with respect to the background
space-time M4. This goes down to saying that the cosmos has neither
“inside” nor “outside” as graphically outlined in [4], and that each point
in space-time indeed possesses intrinsic informational spin, irrespective
of whether or not its corresponding empirical constitution possesses ex-
trinsic angular momentum.

Recall, from the previous section, that the anti-symmetric part of
the material connection form is given by the complex expression

Ωi
[kl] =

1

2
i ĝ εi· ··kl , (5.1)

which displays the internal constitution of matter in terms of the gauge
coupling constant ĝ. Now, the four-dimensional permutation tensor is
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readily given by
εikl uγ = −εαβργ h

α
i h

β
kh

ρ
l , (5.2)

i.e.,

εαβργ = −εiklh
i
αh

k
βh

l
ρuγ + aαβργ + bαβργ + cαβργ , (5.3)

εikl = −εαβργ h
α
i h

β
kh

ρ
l u

γ , (5.4)

aαβργ = εµβργ u
µuα , (5.5)

bαβργ = εαµργ u
µuβ , (5.6)

cαβργ = εαβµγ u
µuρ . (5.7)

We therefore see that

Ωi
[kl] = −1

2
i ĝ εα· · ·

·βργ h
i
αh

β
kh

ρ
l u

γ , (5.8)

and, in particular, that

∇mΩi
[kl] = −1

2
i ĝ hi

αh
β
kh

ρ
l h

λ
mεα· · ·

·βργϕ
γ ·
·λ . (5.9)

The spatial curvature giving rise to matter can now be written as

Ri· · ·
·jkl = B i· · ·

·jkl +M i· · ·
·jkl , (5.10)

B i· · ·
·jkl =

∂P i
jl

∂Y k
−

∂P i
jk

∂Y l
+ Pm

jl P
i
mk − Pm

jkP
i
ml , (5.11)

M i· · ·
·jkl = ∇̂kC

i
jl − ∇̂lC

i
jk + Cm

jl C
i
mk − Cm

jkC
i
ml , (5.12)

P i
kl =

1

2
hip

(
∂hpk

∂Y l
− ∂hkl

∂Y p
+

∂hlp

∂Y k

)
= ∆i

kl , (5.13)

Ci
kl = Ωi

[kl] − hip
(
hkmΩm

[pl] + hlmΩm
[pk]

)
= Ωi

[kl] , (5.14)

where ∇̂ denotes covariant differentiation with respect to the symmetric
connection form P i

kl(∆
i
kl).

The special integrability conditions for our particular model of space-
time geometry possessing absolute angular momentum will be given by

hβ
i ∆

α
βγ = 0 , (5.15)

hα
i h

β
j h

ρ
kh

γ
l

(
Rαβργ + ϕαρϕβγ − ϕαγϕβρ

)
= 0 , (5.16)

such that, explicitly,

Ωi
kl = hi

α

∂hα
k

∂Y l
= hi

α

∗∂hα
k

∂xl
= hi

α

(
∂hα

k

∂xl
+

1

c2
vl

∗∂hα
k

∂t

)
. (5.17)
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We therefore obtain

∆α
βγ =

1

2
uβ g

αρ

(
∂uρ

∂xγ
− ∂uγ

∂xρ
+
dgργ
ds

)
+
1

2
uβ

(
gργ

∂uρ

∂xα
− ∂uα

∂xγ

)
, (5.18)

i.e.,

∆α
βγ =

1

2
uβ g

αρ dgργ
ds

+ uβ

(
gαρΓσ

[ργ]uσ + uρΓα
[ργ]

)
(5.19)

such that the world-velocity uα plays the role of a fundamental “metric
vector”.

This way, matter (material curvature), and hence inertia, arises pu-
rely from the segmental torsional (discontinuity) curvature as follows:

Ri · ··
·jkl = −hi

α

[
∂

∂Y l

(
∂hα

j

∂Y k

)
− ∂

∂Y k

(
∂hα

j

∂Y l

)]
, (5.20)

i.e.,

Ri · ··
·jkl = − 2

c2
hi
αAkl

∗∂hα
j

∂t
, (5.21)

where the angular momentum Aik is given by

Aik =
1

2

(
∂vk
∂xi

− ∂vi
∂xk

)
+

1

2c2
(Fivk − Fkvi)−

−uα

(
cΓα

[ik] +
vi√
g00

Γα
[0k] +

vk√
g00

Γα
[i0]

)
, (5.22)

Fi =
1

√
g00

(
∂w

∂xi
− ∂vi

∂t

)
+ 2

c2
√
g00

Γα
[0i]uα , (5.23)

vi = −c
g0i√
g00

= −c ui , ui = 0 , (5.24)

u0 =
√
g00 , u0 =

1
√
g00

, (5.25)

w = c2 (1−√
g00) . (5.26)

In this particular scheme, therefore, every constitutive object in the
Universe spins in the topological sense of gaining informational spin
from the very formation of matter itself. Inertia would then be a prop-
erty of matter directly arising from this intrinsic mechanism of spin,
which encompasses the geometric formation of all massive objects at
any scale. This, in turn, subtly corresponds to the Machian conjec-
ture of the inertia (mass) of an object being dependent on a distant,
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massive frame of reference (if not all other massive objects in the Uni-
verse). However, since our peculiar geometric mechanism here exists at
every point of space-time, and in the topological background of things,
the corresponding generation of inertia is simply more intrinsic than
the initial Machian scheme. Accordingly, there is no need to invoke
the existence of a distant galactic frame of reference, other than the
general non-orientability and curvature-generating discreteness of the
hypersurface representing matter.

§6. Conclusion. We have outlined a seminal sketch of a fully hydro-
dynamical geometric theory of space-time and fields, which might com-
plement Zelmanov’s chronometric formulation of the General Theory of
Relativity. In our theory, chronometricity is particularly geometrized
through the unique hydrodynamical nature of the asymmetric extrinsic
curvature of the material hypersurface.

Following our previous works we have unified the gravitational and
electromagnetic fields, with chromodynamics arising from the fully ge-
ometrized inner structure of the electromagnetic field, which is shown to
be the Yang-Mills gauge field (appearing here in its generalized form).
In the present work, it is interesting to note that the role of the non-
Abelian gauge field (represented by its components, namely, Ai

α) is very
naturally played by the projective chronometric structure (with compo-
nents hi

α), and so the inner constitution of elementary particles cannot
be divorced from chronometricity at all.

In our approach to Mach’s principle through a pure monad model
possessing absolute angular momentum, the unique Kleinian topology
of the Universe gives rise to inertia in terms of the non-orientable spin
dynamics and discrete intrinsic geometry of the material hypersurface,
rendering the respective generation of inertia both local and global (i.e.,
signifying, in a cosmological sense, scale-independence as well as intrin-
sic topological interdependence among “particulars” and “universals”).
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LATEX. Utförd genom Ubuntu Linux.

Copyright c© The Abraham Zelmanov Journal, 2010

All rights reserved. Electronic copying and printing of this journal for non-profit,
academic, or individual use can be made without permission or charge. Any part of
this journal being cited or used howsoever in other publications must acknowledge
this publication. No part of this journal may be reproduced in any form whatsoever
(including storage in any media) for commercial use without the prior permission
of the publisher. Requests for permission to reproduce any part of this journal for
commercial use must be addressed to the publisher.

Eftertryck förbjudet. Elektronisk kopiering och eftertryckning av denna tidskrift
i icke-kommersiellt, akademiskt, eller individuellt syfte är till̊aten utan tillst̊and
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