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Abstract: In this paper, we briefly review the basic theory of the
Alcubierre drive, known as the Warp Drive Concept, and its subse-
quent improvements. By using the Arnowitt-Deser-Misner formalism
we then re-formulate an extended extrinsic curvature which corre-
sponds to the extra curvature of the Extended General Relativity
(EGR). With this preparation, we are able to generalize the Alcu-
bierre metric wherein the space-like hypersurfaces are Riemannian,
and the characteristic Alcubierre function is associated with the EGR
geometry. This results in a reduced energy density tensor, whose form
displays a potential ability to avoid the weak energy condition.
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Notations:

To completely appreciate this article, it is imperative to define some
notations employed.

Indices. Throughout this paper, we adopt the Einstein summation
convention whereby a repeated index implies summation over all val-
ues of this index:

4-tensor or 4-vector: small Latin indices a, b, . . . = 1, 2, 3, 4;

3-tensor or 3-vector: small Greek indices α, β, . . . = 1, 2, 3;

4-volume element: d4x;

3-volume element: d3x.

Signature of space-time metric:

(−+++) unless otherwise specified.

Operations:

Scalar function: U(xa);

Ordinary derivative: ∂aU ;

Covariant derivative in GR: ∇a;

Covariant derivative in EGR: Da or ′, (alternatively).

Newton’s constant:

G = c = 1.
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Introduction

The physical restriction related to the finite nature of the light velocity
has so far been a stumbling block to exploring the superluminal speed
possibility of long-term space journeys.

However, recent theoretical works have lent support to plausible in-
terstellar hyperfast travels, without physiological human constraints.

How is this possible? The principle of space travel while locally “at
rest”, is analogous to galaxies receding away from each other at extreme
velocities due to the expansion (and contraction) of the Universe.

Instead of moving a spaceship from a planet A to a planet B, we
modify the space between them. The spaceship can be carried along by
a local spacetime “singular region” and is thus “surfing” through space
with a given velocity with respect to the rest of the Universe.

In 1994, a Mexican physicist Miguel Alcubierre [1], working at the
Physics and Astronomy Department of Cardiff University in Wales,
Great Britain, published a short paper describing such a propulsion
mode, known today under the name Warp Drive.

Based on this theory, a faster than light travel could be for the first
time considered without violating the laws of relativity.

Many problems (open questions) remain to be investigated, among
which two major problems are reflected in the following statements:

a) Produce a sufficiently large negative energy to create a local space
distortion without violating the energy conditions resulting from
the laws of General Relativity [2];

b) Maintain contact (control) between the spaceship and the outside
of the distorsion (causality connection).

The problem a) can be avoided if one considers a non-Riemannian
geometry that governs the laws of our Universe [3] which could eliminate
the negative energy density required by the Alcubierre metric to sustain
a realistic Warp Drive.

The difficulty b) may be theoretically circumvented by introducing
certain types of transformations which may allow us to use the warped
regions for the removal of the singularities or “event horizons”. Some of
these transformations are briefly reviewed in the course of this study.

Pre-requisite: time-like unit four-vector

As is well known [4], the covariant derivative of a time-like vector field ua

(whose square is uaua =−1), may be expressed in an invariant manner
in terms of tensor fields which describe the kinematics of the congruence
of curves generated by the vector field ua.
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One may write

ua;b = ςab + ωab +
1

3
(θhab) + u̇aub ,

where u̇a= ua;bu
b is the acceleration of the flow lines, τ is the proper

time, ωab = hc
ah

d
b u[c;d] is the vorticity tensor, hab = gab +uaub is the pro-

jection tensor, θab = hc
ah

d
b u(c;d) is the expansion tensor, θ=habθab =ua

;a

is the expansion scalar, ςab = θab − 1
3
(habθ) is the shear tensor.

The kinematic quantities are completely orthogonal to ua, i.e.,

habu
b = ωabu

b = ςabu
b = 0 , u̇au

b = ωau
b = 0 .

Physically, the time-like vector field ua is often taken to be the four-
velocity of a fluid. The volume element expansion θ extracted from
this decomposition can be thus seen as a hydrodynamic picture: it is of
major importance in the foregoing.

Chapter 1. Basics of Warp Drive Physics

§1.1. Description of the Alcubierre concept

§1.1.1 Space-time bubble

The Universe is approximated as a Minkowskian space: we choose an
arbitrary curve and deform the space-time in the immediate vicinity in
such a way that the curve becomes a time-like geodesic somewhat like
a “ripple”, in order to generate a perturbed or singular local region in
which one may fit a spaceship and its occupants.

Let xs be the center of the region where the spaceship stays, and x
any coordinate within this region so that x=xs for the spaceship.

Within an orthonormal coordinate frame, such a region, which is
referred to as a bubble, is transported forward with respect to distant
observers, along a given direction (x in this text).

With respect to the same distant observers, the apparent velocity of
the bubble center is given by

vs(t) =
dxs(t)

dt
, (1.1)

where xs(t) is the trajectory of the region along the x-direction, and

rs(t) =

√

(x− xs(t))
2
+ y2 + z2 (1.2)

is the variable distance outward from the center of the spaceship until
ℜ which may be called the radius of the singular region.

The spaceship is at rest inside the bubble and has no local velocity.
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§1.1.2. Characteristics

From these first elements, we must now select the exact form of a met-
ric that will “push” the spaceship along a trajectory described by an
arbitrary function of time (xs, t).

Furthermore, this trajectory should be a time-like geodesic, whatever
vs(t). By substituting x=xs(t) in the new metric to be defined, we
should expect to find

dτ = dt . (1.3)

The proper time of the spaceship is equal to coordinate time which
is also the proper time of distant observers.

Since these observers are situated in the flat region, we conclude
that the spaceship suffers no time dilation as it moves. It will be easy
to prove that this spaceship moves along a time-like geodesic and its
proper acceleration is zero.

§1.2. The physics that leads to Warp Drive

§1.2.1. The (3+1) Formalism: the Arnowitt-Deser-Misner
(ADM) technique

In 1960, Arnowitt, Deser, and Misner [5] suggested a technique based
on decomposing the space-time into a family of space-like hypersurfaces
and parametrized by the value of an arbitrarily chosen time coordi-
nate x4.

This “foilation” displays a proper-time element dτ between two
nearby hypersurfaces labelled x4 = const and x4 + dx4 = const. The
proper-time element dτ must be proportional to dx4. Thus we write

dτ = N
(

xα, x4
)

dx4. (1.4)

In the ADM terminology, N is called the lapse function and more
specifically the time lapse.

Consider now the three-vector whose spatial coordinates xα are lying
in the hypersurface (x4 = const) and which is normal to it.

We want to evaluate this vector on the second hypersurface, which
is x4 + dx4 = const, where these coordinates now become Nαdx4. This
Nα vector is known as the shift vector.

The ADM four-metric tensor is decomposed into covariant compo-
nents

(gab)ADM =

{

−N2 −NαNβ g
αβ , Nβ ,

Nα , gαβ .
(1.5)
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The line element corresponding to the hypersurfaces’ separation is
therefore written

(ds2)ADM = (gab)ADMdxadxb

or

(ds2)ADM = −N2
(

dx4
)2

+ gab
(

Nαdx4 + dxα
)(

Nβdx4 + dxβ
)

=

=
(

−N2 −NαN
α
)(

dx4
)2

+ 2Nβ dx
4dxβ + gαβ dx

αdxβ , (1.6)

where gαβ is the 3-metric tensor of the hypersurfaces.
The ADM metric tensor has the contravariant components

(gab)ADM =















−N−2,
Nβ

N2
,

Nα

N2
, gαβ −Nα Nβ

N2
.

(1.7)

As a result, the hypersurfaces have a unit time-like normal vector
with components

na = N−1 (1, −Nα) , na = (−N, 0) . (1.8)

When the fundamental three-tensor satisfies gαβ = δαβ the metric
(1.6) becomes

ds2 = −
(

N2 −NαN
α
)

dt2 − 2Nαdxdt+ dxαdxβ

or
ds2 = −N2dt2 − (dx+Nαdt)

2
+ dy2 + dz2. (1.9)

§1.2.2. Curvatures in the ADM formalism

The Einstein action can be written in terms of the metric tensor (gab)ADM

(1.5) and (1.7), as [6]

SADM =

∫

R
√
−g d4x =

=

∫

dt

∫

N
(

KαβK
αβ −K2 + (3)R

)√−g d3x+

+ boundary terms
(

Kα
αK

β
β =K2

)

, (1.10)

where g= det ‖gαβ‖, while (3)R stands for the intrinsic curvature tensor
of the hypersurface x4 = const

Kαβ = (2N)
−1

(−Nα;β −Nβ;α + ∂t gαβ) . (1.11)
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The tensor (1.11) (in which ; refers to covariant differentiation with
respect to the three-metric), represents the extrinsic curvature, and as
such, describes the manner in which that surface is embedded in the
surrounding four-dimensional space-time.

The determinant (4)g of the four-metric is shown to be related to the
determinant (3)g by

√

− (4)g = N
√

(3)g .

The rate of change of the three-metric tensor gαβ with respect to
the time label can be decomposed into “normal” and “tangential” con-
tributions:

• The normal change is proportional to the extrinsic curvature −2N
Kαβ

of the hypersurface;

• The tangential change is given by the Lie derivative of gαβ along
the shift vector Nα, namely

L
N

gαβ = 2N(α;β) . (1.12)

The main advantage of the ADM formalism is that the time deriva-
tive is isolated and it can be used in further specific computations.
Furthermore we verify that

Kαβ = −nα;β , (1.13)

which is sometimes called the second fundamental form of the three-
space [7]. Six of the ten Einstein equations imply for Kα

β to evolve
according to [8]

∂Kα
β

∂t
+ L

N

Kα
β = ∇α∇β N +

+N
[

Rα
β +Kα

αK
α
β + 4π (T − C) δαβ − 8πTα

β

]

, (1.14)

where Rα
β is the three-Ricci tensor, and C =Tab n

anb is the material
energy density in the rest frame of normal congruence (time-like vector
field) with T =Tα

α .
It is convenient to introduce the three-momentum current density

Iα =−nc T
c
α. So the remaining four equations finally form the so-called

constraint equations

H =
1

2

(

R−Kα
βK

β
α +K2

)

− 8πC = 0 , (1.15)

Hβ = ∇α

(

Kα
β −Kδαβ

)

− 8πIβ = 0 . (1.16)

Equation (1.15) will be of central importance in the present theory.
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Chapter 2. The Alcubierre Warp Drive

§2.1. The Alcubierre metric

In view of building a space warp progressing along the x-direction, one
may choose with Alcubierre

N = 1

N1 = − vs(t) f(rs, t)

N2 = N3 = 0











, (2.1)

we then have

(ds2)AL = − dt2 +
[

dx− vs f(rs, t) dt
]2

+ dy2 + dz2; (2.2)

this interval is known as the Alcubierre metric.
The function f(rs, t) is so defined as to cause space-time to contract

on the forward edge and equally expanding on the trailing edge of the
singular region. It is often referred to as a “top hat” function.

Let us now write down the Alcubierre metric under the following
equivalent form

(ds2)AL = −
[

1− v2s f
2(rs, t)

]

dt2 − 2vsf dtdx+ dx2 + dy2 + dz2, (2.3)

which puts in evidence the covariant components of the Alcubierre met-
ric tensor

(g44)AL = −
[

1− v2s f
2(rs, t)

]

(g41)AL = (g14)AL = − vs f(rs, t)

(g22)AL = (g33)AL = 1















. (2.4)

§2.2 Analyzing the “top hat” function

We now turn our attention to the “top hat” function f(rs, t) itself,
which allows for the bubble to develop. Alcubierre originally chosen the
following form

f(rs, t) =
tanh

[

σ (rs + ℜ)
]

− tanh
[

σ (rs −ℜ)
]

2 tanh (σR)
, (2.5)

where ℜ> 0 is the “radius” of the “region”, while σ is a “bump” param-
eter which can be used to “tune” the “wall” thickness of the singular
region.
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The larger this parameter, the greater the contained energy density,
so its shell thickness decreases. Moreover, the absolute increase of σ
means a faster approach of the condition

lim
σ→∞

f(rs, t) =

{

1 for rs ∈ [−ℜ, ℜ ] ,

0 otherwise.
(2.6)

Note that rs =0 at the center of the singular region (spaceship loca-
tion). For rs >ℜ, the function f(rs, t) should rapidly verify f(rs, t)= 0
and we recover the Minkowski space-time.

As outlined earlier, any function will suffice so long as the above
conditions are fullfilled. For simplified calculations, it is convenient to
introduce the equivalent piecewise continuous function as established
by Pfenning and Ford [9]

fp.c.(rs, t) =















1 for rs <ℜ− ∆
2
,

(

−1
∆

)(

rs−ℜ− ∆
2

)

for ℜ− ∆
2
<rs <ℜ+ ∆

2
,

0 for rs >ℜ+ ∆
2
,

(2.7)

where the variable ∆ is the region shell “thickness”.
Setting the slopes of the functions f(rs, t) and fp.c.(rs, t) to be equal

at rs =ℜ, leads to the following result

∆ =
1 + tanh2 (σℜ)2
2σ [ tanh (σℜ)] . (2.8)

For large σℜ, one may admit the approximation

∆ ≈ 2

σ
. (2.9)

§2.3. Eulerian observer

§2.3.1 Definition

With the choice of the three-vector Nα =0, we have a particular coordi-
nate frame called normal coordinates, according to (1.8). Such a choice
of coordinates constitutes an “Eulerian” gauge.

In the Alcubierre formalism, N1 6=0 characterizes a special type of
observer who “measures” the warped shell and the associated region
when they cross through.

His four-velocity is normal to the hypersurfaces. This observer, who
also is referred to as Eulerian observer, is initially at rest. Just the front
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wall of the disturbance reaches the observer, he begins to accelerate, in
the progressing direction of the singular region, relative to observers
located at large distance from him.

Once during his “stay” inside the region, the Eulerian observer trav-
els with a nearly constant velocity given by

dx(t)

dt
= vs(tρ, ρ) f(ρ) , (2.10)

where tρ is the time measured at the coordinate

ρ =
√

y2 + z2 . (2.11)

This velocity will always be less than the region’s velocity unless
ρ=0, i.e. when the observer is at the center of the spaceship.

After reaching the region’s equator, the Eulerian observer deceler-
ates, and is left at rest while going out of the rear edge of the “wall”.

If using the piecewise continuous function of Pfenning for rs<ℜ−∆
2
,

any observer moves along the singular region with the same speed. In-
side the warped regions (“shells”), i.e. for

ℜ− ∆

2
< ρ < ℜ+

∆

2
,

we recover the conditions deduced from the “top hat” function (2.5),
as viewed by the Eulerian observer. The singular regions have toroidal
geometry concentrated on either part of the longitudinal direction of
travel x, and are thus perpendicular to the plane defined by ρ.

§2.3.2. Specific characteristics

Following Alcubierre, such an observer has a four-velocity normal to the
hypersurfaces t= const.

With the condition dτ = dt= ds, it is straightforward to show that
this four-velocity has the following components

(ua)AL =
[

1, vs f(rs, t), 0, 0
]

(ua)AL =
[

−1, 0, 0, 0
]

}

. (2.12)

The Eulerian observer follows time-like geodesics orthogonal to the
Euclidean hypersurfaces.

From the metric (2.2), inspection shows that the Eulerian observer
is in free fall, i.e. his four-acceleration is zero

(ab)AL = (ua)AL (u
b
;a)AL = 0 ,
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which confirms the postulate of §1.1.2.
In this case δαβ = gαβ , N =1, and (1.11) reduces to

Kαβ =
1

2

(

∂αNβ + ∂βNα

)

.

The contracted tensor, which is defined by

θ = − traceKαβ , (2.13)

is the expansion scalar defined above; it means the expansion of the
three-volume element which, taking account of (2.1), is

θ = vs
df

(dx)AL

, (2.14)

where (x)AL = x−xs(t) is the single derivative variable.
Hence, we find

θ = vs

(

df

drs

)[

drs
d(x− xs)

]

(2.15)

and by using the classical derivative formula of functions of functions,
it is not difficult to show that this last formula becomes

θ = vs

(

df

drs

)(

xs

rs

)

. (2.16)

Obviously, the shape of the function f , (2.5) induces both a volume
contraction and expansion ahead of, as well as behind, the singular
region.

§2.4. Negative energy requirement

§2.4.1. The Alcubierre-Einstein tensor

Before determining the form of the Alcubierre-Einstein tensor, we recall
briefly the so-called energy conditions.

Let us consider at a point p on the manifold (M, gab), an energy-
momentum tensor T ab.

For any time-like vector ua ∈Tp (tangent space at p), one must have
the inequality

C = Tab u
bub

> 0 , (2.17)

known as the weak energy condition.
In addition, the “dominant” energy condition stipulates that for any

time-like four-vector ua> 0, the four-vector Qa=T a
b u

b is a non-space-
like vector.
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By continuity, the weak energy condition implies the null energy

condition which asserts that for any null vector ka

Tabk
akb > 0 .

Lastly, we consider the strong energy condition for any time-like
four-vector ua

(

Tab −
1

2
gab T

)

uaub
> 0 .

Note: The dominant energy condition implies the weak energy con-
dition and therefore the null energy condition, but not necessarily the
strong energy condition, which itself implies the null energy condition
but not necessarily the weak energy condition.

From the components of the metric tensor (2.4), it is possible to
form the contravariant components of the Ricci tensor (Rab)AL of the
Alcubierre metric.

The resulting Einstein tensor

(Gab)AL = (Rab)AL −
1

2
(gab)ALR

contains the time component (R44)AL and

(G44)AL = −
(

v2s
4r2s

)

ρ2
(

df

drs

)2

.

Using (G44)AL to define the energy density (T 44)AL, one finds

C =
1

8π
(G44)AL (u4u4)AL = − 1

32π

(

v2s ρ
2

r2s

)(

df

drs

)2

. (2.18)

This formula is always negative as seen by the Eulerian observers,
and therefore it is not compatible with the energy condition (2.17).

Another way of writing this equation is obtained by using the Gauss-
Codazzi relations to form the Einstein tensor as a function of both the
intrinsic and extrinsic curvatures, which eventually leads to [10]

C = Tab n
anb =

1

16π

(

(3)R+K2 −KαβK
αβ
)

. (2.19)

By choosing N1 =−vs f(rs), N2 =N3 =0, and (3)R=0 the Alcu-
bierre formulation is obtained again.

The energy density as measured by the Eulerian observer is given by

(C)AL =
1

16π

(

K2 −KαβK
αβ
)

, (2.20)
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thus referring to (2.13), we find back

θ = − ∂1N
1 = vs f

′(rs)
x− xs

rs
(2.21)

and

(C)AL=
1

16π

[

(

∂1N
1
)2 −

(

∂1N
1
)2 −2

(

∂2N
1

2

)2

−2

(

∂3N
1

2

)2
]

, (2.22)

(C)AL = − 1

32π
v2s f

′2(rs)
y2 + z2

r2s
. (2.23)

§2.4.2. Negative energy

We now write down the form of the total negative energy required to
sustain the Alcubierre metric.

Without loss of generality, we may simplify the case by assuming
a constant velocity for the singular region, i.e.

x(t) = vs(t) (2.24)

at t=0, we have
rs(t = 0) ,

√

(xα)2 = r . (2.25)

Under these conditions, we must calculate the integral of the local
energy density over the proper volume d3x= dV (hypersurface)

E =

∫ √
y T 44 dV, (2.26)

where y is the determinant of the spatial metric on the hypersurface
t= const, which, in our case, is y=1.

One finds

E = − 1

32π
v2s

∫

ρ2

r2

[

df(rs, t)

dr

]2

dV. (2.27)

With the piecewise function of Pfenning (2.7), the energy is, in the
spherical coordinates

E = − 1

12
v2s

∫ ℜ+∆/2

ℜ−∆/2

r2
(

− 1

∆

)2

dr. (2.28)

The contributions to the energy come only from the singular region’s
“shell” areas.

We then see that one needs a special type of negative energy (matter)
to travel faster than the speed of light by means of a Warp Drive. Such
an exotic matter has never been detected so far.
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Chapter 3. Causality

§3.1. Horizon formation

We regard the speed of the spaceship v as constant, and rs is then

rs =

√

(x− vt)2 + y2 + z2 (3.1)

reducing the metric (2.3) to two dimensions, y= z=0, we obtain

ds2 = −
(

1− v2f2
)

dt2 − 2vfdxdt+ dx2 (3.2)

for which now

x > vt , (3.3)

r = x− v t = x′ (3.4)

this new variable defines, in the original Alcubierre metric, the proper
spatial coordinate

dx = dx′ + vdt

of the spaceship frame from which are observed the events in order to
ensure a control communication.

Adopting the new coordinate

dx′ = dx− vdt (3.5)

and setting

S(r, t) = 1− f (r, t) , (3.6)

we may keep the metric (3.2) under the same form

(ds2)HS = −
[

1− v2S(r, t)2
]

dt2 − 2vS(r, t)dx′dt+ dx2. (3.7)

We will refer to it as the Hiscock metric after William A. Hiscock [11].
It can be written as

(ds2)HS = (g44)HSdt
2 + 2(g41)HSdx

′dt+ dx′2 (3.8)

with the covariant components of the fundamental tensor

(g44)HS = −
(

1− v2S2
)

(g41)HS = (g14)HS = − vS

(g11)HS = (g22)HS = (g33)HS = 1















. (3.9)
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The spaceship frame metric (3.7) is also expressed by

(ds2)HS = −H(r)

(

dt− vS

H(r)
dx′

)2

+
dx′2

H(r)
, (3.10)

where
(g44)HS = −H(r) ,

we then introduce a new time coordinate

dt′ =
vS

H(r)
dx′, (3.11)

which is manifestly the spaceship’s proper time since H(r)= 1 (thus
f =1) as r=0.

At the same time, the coordinates are not asymptotically normal-
ized. Indeed, for large r distant from the spaceship, H(r) approaches
1− v2 rather than 1. One may solve the problem by defining yet one
more set of coordinates

T ′ =
√

1− v2 t′ , X = x′
√

1− v2 . (3.12)

By examining the form of the metric (3.10), the coordinate system
seems to be valid only for r > 0, i.e. if v < 1 as per (3.3).

However, when v > 1 (superluminal velocity), there exists a coor-
dinate singularity, that is, an event horizon at the location r0 for the
metric (3.10), such that

H(r0) = 0
or

f(r0) = 1− 1

v
. (3.13)

This horizon first appears for the occupants of the spaceship, who
are unable to “see” beyond the distortion, and therefore cannot com-
municate with the outer universe.

§3.2. Reducing the energy

Based on the works produced byW. Hiscock, F. Loup, D. Waite and also
E. Halerewicz et al. [12, 13], it has been proposed a particular metric
which allows for the use of the warped region in order to “causally
connect” the inside of the spaceship and the outside of the singular
bubble region.

This generalized Hiscock metric (3.7) can also dramatically lower
the negative energy requirements.
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§3.2.1. The ESAA metric

By lowering the energy requirement, the proposed model intends to show
that the Warp Drive metric is much more realistic than that originally
shown by Pfenning and Ford.

We refer to this new space-time metric as Ex Somnium Ad Astra

(ESAA), which literally translates as From a Dream to the Stars (Simon
Jenks).

We are going to introduce the change ρ= rs of the variables. In-
dependently of this change, the ESAA metric differs from (3.7) by the
fundamental tensor whose covariant components are

(g44)ESAA = −
[

N2(ρ)− vsS(ρ)
2
]

(g41)ESAA = (g14)ESAA = − vsS(ρ)

(g11)ESAA = (g22)ESAA = (g33)ESAA = 1















, (3.14)

thus from these we readily note that the “time lapse” function is no
longer equal to 1.

In cylindrical coordinates (following x), the ESAA metric is

(ds2)ESAA = −
[

N(ρ)− vs(r)S(ρ)
]2
dt2 −

− 2vsS(ρ) + dx′2 + dr2 + r2dφ2. (3.15)

Let us set
r = ρ sin θ , x′ = r cos θ ,

it is then easy to see that (3.15) becomes

(ds2)ESAA =
[

N2(t, ρ)− vs(t)S
2(ρ)

]

dt2 + 2vs(t)S(ρ) cos θ dtdr −
− 2vs(t)S(ρ) ρ sin θ dθdt+ dr2 + ρ2dθ2 + ρ2 sin2 θ dφ2. (3.16)

§3.2.2 Required energy

The energy density of the spaceship frame is given by

(T 44)ESAA = − vs
32π

(

dS

dρ

)2
(sin θ)

2

N4(ρ, t)
. (3.17)

Clearly, an arbitrarily large N reduces the (negative) energy density
requirement of the spaceship frame.

In our given coordinate system, the volume element is given by

dV = ρ2 sin θ dρ dθ dφ ,



Patrick Marquet 277

rs f S N

0 1 0 1.023

20 0.997 0.0023 3.428

50 0.5 0.5 2×1075

100 4.5×10−5 0.9999 1.0950

Table 1: Numerical estimates for the lapse function.

thus reinstating Newton’s constant G and c, the total energy required
to sustain the distortion is finally given here by

E = −
∫ ∞

0

[

vsc
4

12G

(

dS

dρ

)2
1

N4

]

ρ2dρ . (3.18)

Another modification of the Alcubierre geometry has been suggested
by Van den Broeck [14], in order to reduce the amount of needed nega-
tive energy.

The Van den Broeck metric is

ds2 = − dt2 +B2(rs)
[

dx− vs(t) f(rs) dt
]2

+ dy2 + dz2,

where B(rs) is a twice differentiable polynomial such that its numeri-
cal value is −1<B(rs)6 1+α for ℜ′ 6 rs 6ℜ′ +∆′, and B(rs)= 1 for
ℜ′ +∆′ 6 rs (here ℜ′ is the radius of an internal “blown pocket” within
the Alcubierre region with thickness ∆).

This modification keeps the surface area of the bubble itself micro-
scopically small, while at the same time expanding the spatial volume
inside the region caused by the factor α.

One can show that the energy density given by the tensor T44 is
much lower than the one calculated by Alcubierre.

As an example, reinstating again the factor c2/G, to get the kilo-
gram units, for a bubble of ℜ=100m, the standard Alcubierre value
for the total negative energy would be E≈−6.2×1062 vs Kg, which is
theoretically enormous, but with the Van den Broeck solution (vs ≈ 1),
this energy is reduced to 4.9×1030Kg, that is a few solar masses: this
shows that reasonable energy levels can be reached by investigating new
models.

It is however difficult to establish energy level comparisons. This is
because each model is characterized by different and newly introduced
parameters.

In the case of the ESAA metric, we can, as an indication, compute
some values for the functions f and S with the resulting lapse function
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N , setting the initial values for the bump parameter as σ=0.1 and
bubble radius ℜ=50m.

We first notice that in the warped regions (rs =ℜ), the lapse function
N takes on very large values, which appears as a severe drawback, but
interestingly, for rs >ℜ, the ESAA model yields back a lapse function
N → 1, which is in full accordance with the free fall condition (1.3).

§3.3. Causally connected spaceship

§3.3.1. The spaceship frame of reference

As we defined the Pfenning piecewise function (2.7) corresponding to
the Alcubierre “top hat” function, we may establish the similar type of
function with the time lapse N inserted

f(rs)p.c. =















1 for rs < ℜ − ∆
2
,

1−
(

1
N

)

rs −ℜ for ℜ − ∆
2
< rs < ℜ+ ∆

2
,

0 for rs > ℜ+ ∆
2
.

The “free fall” condition demands

N(rs) =

{

1 for rs < ℜ− ∆
2
,

1 for rs > ℜ+ ∆
2
.

The spaceship frame Hiscock-ESAA horizon is thus defined as

H(rs) =



























1 for rs < ℜ− ∆
2
, H(rs) > 0 ,

N2 −
(

vs
N

)2
for rs = ℜ− ∆

2
, H(rs) > 0 ,

N2 for rs = ℜ , H(rs) > 0 ,

N2 −
(

vs
N

)2
for rs = ℜ+ ∆

2
, H(rs) > 0 ,

where we emphasize that N does not depend on the speed vs.
Three cases are to be considered:

Subliminal velocities : For large values of N , the spaceship will always
be connected to the domain from rs =0 (center of the spaceship)
to the exterior part of the bubble rs =ℜ+ ∆

2
, and since H(rs)> 0,

there is no horizon;

Luminal velocity : For the same domain, H(rs)= 0, since N =1 and
S(r)= 1, a horizon will appear in front of the spaceship, which
becomes causally disconnected from the part beyond the bubble.
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Provided that N is not a function of the speed and has been en-

gineered at subluminal speeds, it is always connected to the space-

ship and the warped region
∫ ℜ+∆/2

ℜ−∆/2 can be “controlled” by the

“astronauts”;

Superluminal velocities : The same argument applies here.

§3.3.2. A remote frame of reference

With the function N(t, rs), the Alcubierre metric is written

(dτ2)ALN = (ds2)ALN = −N2dt2 −
[

dx − vs f(rs, t) dt
]2

or

(ds2)ALN = −
(

N2 − vs f
2(rs, t)

)

dt2 − 2vs f(rs, t) dtdx + dx2 =

= −M(rs)dt
2 − 2vs f(rs) dxdt + dx2, (3.19)

where M(rs)=N2 − v2s f(rs)
2.

We will refer to (3.19) as the ESAA-Alcubierre metric, as observed
from a remote frame of reference.

The remote metric of Hiscock, analogous to (3.10), is thus given by

(ds2)ALN = −M(rs)dt
′2 +

N2

M(rs)
dx2,

lending

dt′2 = − dt2 − 2vs f(rs) dxdt

M(rs)
+

N2 −M(rs)

M(rs)2
dx2. (3.20)

If vs < 1 (subliminal), M(rs)> 0 then the domain is causally con-
nected to the spaceship’s remote frame.

If vs =1 (luminal), M(rs)= 0, a horizon appears for the remote
frame.

If vs > 1 (superluminal), M(rs)< 0, a horizon appears somewhere
between ℜ− ∆

2
and rs <ℜ− ∆

2
.

Using the continuous “top hat” function in (3.20) for the warped
region of Pfenning

[

ℜ− ∆
2
, ℜ+ ∆

2

]

, one obtains

M(rs) = N2 − h

with

h =

√

1−
[

v2s (rs −ℜ)2
]

N2(t, rs) .

Given that N2 ≫ vs f
2(rs), then M(rs)> 0 and the warped region

will be always connected to the remote frame.
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In other words, for large N , a signal can be sent by the spaceship to
rs =ℜ+ ∆

2
, and a signal sent by a remote observer can reach rs =ℜ− ∆

2
.

Therefore the region between

ℜ − ∆

2
6 rs 6 ℜ+

∆

2

is observed from both frames, and may allow us to engineer the space-
ship (speed control). Reverting now to the Alcubierre function

f(rs, t) =
tanh

[

σ(rs + ℜ)
]

− tanh
[

σ(rs −ℜ)
]

2 tanh(σℜ) ,

we know that it is 1 in the spaceship and 0 far from it. There exists
an open interval where f(rs, t) starts to decrease from 1 to 0, precisely
where the negative energy is located.

In order to maintain the “free fall” condition (1.3), N should reduce
to 1 in the spaceship and far from it outside the singular region.

In order to fulfill this condition, we suggest here the following form
for N which differs from the formula (33) of [13]

N = exp
(

tanh
[

σ(rs −ℜ)
]2
)

. (3.21)

This has the advantage of taking higher “peak” value near the space-
ship where the excessive proper time Ndτ is thus rapidly shortened
as rs →ℜ.

Chapter 4. The EGR-Like Picture

§4.1. A particular extended Lie derivative

Instead of considering the Alcubierre function f associated with a local
Riemannian structure emerging from a background Euclidean space-
time, we choose here to express f in the EGR-like formulation.

Unlike the classical theory, this singular region will now be distin-
guished from a non-flat background space-time i.e. a “weak” Rieman-
nian background manifold, which is physically more appropriate.

Our aim is to find an additional energy decrease with a way to
possibly avoid violating the weak energy condition.

We begin by defining an extended Lie derivative of gab that leads to
a new extrinsic curvature.

Let us consider the infinitesimal coordinates shift

x′a = xa +Na, (4.1)
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the relevant metric variation is classically given by

δgab = − gac
∂N c

∂xb
− gcb

∂N c

∂xa
− ∂gab

∂xc
N c. (4.2)

Furthermore it can be shown that [15]

δgab = (Na;b +Nb;a) = L
N

gab . (4.3)

When L
N

gab=0, we have the Killing equations which preserve the

metric (a condition referred to as infinitesimal isometry) under (4.1).
In the EGR theory, the metric undergoes an additional variation ζ

upon (4.1) due to the covariant derivative of the metric, and we expect
to find for the Killing equations the following expression

L
N

gab = ζ gab . (4.4)

We need now to define the explicit form of the infinitesimal variation
ζ. To this effect we will first consider a vector l with components Ai

such that
l2 = gik A

iAk

upon (4.1) this vector is varied by

l′2 = (1 + ζ) l2,

i.e.
dl2 = ζ l2.

Obviously we have

dl2 = (Dc gik)A
iAk dxc,

where, as stipulated in the EGR theory,

Dc gik =
1

3

(

Jk gci + Ji gck − Jc gik
)

,

thus
dl2 = l2 gik (Dc gik) dx

c

and so
ζ = gik (Dc gik) dx

c

setting
gik (Dc gik) = Bc

we write
ζ gab = gabBcdx

c.
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Within a sufficient approximation, we may set

dxc = N c,

hence we define the “extended Lie derivative” of gab as

L
N′

gab ≡ L
N

gab BcN
c, (4.5)

where N ′ is the rescaled shift vector.
At this stage, we want to stress that the assumed extension is here

always considered in a Riemannian scheme.
The definition (4.5) formally holds for a Lie derivative of gab, pro-

vided the last term is “likened” to a Riemannian correction.
Indeed a “non-Riemannian” Lie derivative (i.e. defined in the frame-

work of the EGR theory) is not applicable, due to the algebraic nature
of this operation.

The EGR theory however provides a justification as to the origin of
the extra term in (4.5).

§4.2. Extended extrinsic curvature and associated energy
density

We are now able to define the “extended” extrinsic curvature as

K ′

αβ = (2N ′)−1

(

∇α N ′

β +∇β N
′

α +
∂gαβ
∂t

)

. (4.6)

Accordingly, we still consider the classical field equations as inferred
from the Hilbert-Einstein action

S =

∫

R
√−g d4x .

By doing so, we set forth a close one-to-one correspondence between
the EGR scalar curvature R=R− 1

3

(

∇eJ
e+ 1

2
J2
)

and the modified
Riemannian scalar curvature R depicted in Riemannian geometry.

In this perspective, the equation (2.19) becomes here

C′ =
1

6π

(

(3)R′ −K ′

αβK
′αβ +K ′2

)

. (4.7)

Now we are going to generalize the Alcubierre metric by following
the same pattern which has led to (2.20).

However, based on the extended formulation, we now choose

N ′1 = − vs f(rs) , (4.8)
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N ′2 = N2, N ′3 = N3 (4.9)
and

(3)R′ = (3)R .

An immediate and important consequence appears when one ob-
serves the form of the expression

(C′)AL=
1

16π

[

(3)R−Kαβ(N
′1, N)Kαβ(N ′1, N)+K2(N ′1, N)

]

. (4.10)

In contrast to the classical Alcubierre scheme, the non-vanishing
initial Riemannian scalar curvature of the hypersurfaces may have now
a significant impact on the negative energy density reduction.

In addition, the term K2, which should not cancel off here, con-
tributes even further to lowering this energy.

Discussion and Concluding Remarks

First observation : The expansion of the volume element θ=−Kα
α is

attached to the bubble which it generates and is thus a local prop-
erty;

Second observation : The free fall condition (1.3) requires obviously
a flat space (flat Universe), instead of a Riemannian one.

However, in the EGR context, the non-vanishing scalar curvature
(3)R may be also regarded here as sufficiently “local” with respect to the
(quasi) Euclidean space as a whole, wherein the Eulerian observers are
situated.

Indeed, if the three-volume of each hypersurface t= const is ex-
tremalized, the conditionK = const results (see André Lichnérowicz [16]
and also subsequently maximum slicing conditions by Yvonne Choquet
Bruhat [17]).

It is then possible to impose this condition, with respect to using
equation (1.16), to eliminate (3)R from the trace of equation (1.15): in
this case it is shown that the lapse function can be taken to be N → 1
as an asymptotic boundary condition, which leads to an asymptotically
flat space-time.

This condition is physically satisfied when one considers the scale of
distances in our observable Universe as compared to the bubble warping
dimensions, so that (4.10) holds with an asymptotically flat universe
wherefrom the distant observers are located.

Hence, we can always imagine a situation where stellar massive ob-
jects arranged in such a required configuration are coming into play, and
where the influence of their curvature given by (3)R may then be used to
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balance the negative energy, which renders the Warp Drive compatible
with the weak energy condition.

With these two observations our theory tends to run counter to the
zero expansion Warp Drive suggested by José Natario [18].

Needless to say, all arguments regarding the piecewise function
causality constraints detailed above are equally valid in our extended
formulation.

Within the standard Alcubierre metric, it is however possible to
avoid the problem of causally disconnecting the spaceship from the outer
edge of the bubble.

A somewhat recent two dimensional metric concept has been pro-
posed by Serge V. Krasnikov [19] in which the time for a round trip
to a distant planet as measured by clocks located on the Earth can be
made arbitrarily short.

To connect the Earth to the planet, a space-time extension of this
metric leads to the creation of a “tube” wherein the space-time is flat,
but the light cones are opened out so as to allow superluminal travel [20].

In some cases, these metrics are shown not to lead to the fatally
closed time-like curves.

Appendix. Detailing a stellar round trip example according
to Alcubierre

A1. Stellar journey

Consider two quasi-static planets A and B, which are apart from each
other at a distance D in the Euclidean space-time.

A spaceship starts off on its own (self-propulsion) from A at an initial
moment of time t= tA, with a subluminal velocity v < c.

At a distance d away from A, d≪D, the spaceship stops at a point
where the bubble is being created, which then drags the spaceship to-
wards the planet B, thus inducing a coordinate three-acceleration a that
varies rapidly from a=0 to a= const 6=0.

Halfway, between A and B, the bubble is controlled so as to invert
this acceleration from a to −a.

As the absolute values of acceleration and deceleration are assumed
equal, the spaceship will eventually be at rest at a distance d away from
the planet B at the time the disturbance will disappear (vs =0) and the
journey is further completed at a “physical” speed v < c.

The total coordinate time elapsed in the one-way trip from the planet
A to the planet B is: T = tself-propulsion+ tbubble. Had the acceleration
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been constant along the distance (D− 2d), we would have

(D − 2d) =
a t2bubble

2
,

where

t2bubble =
2 (D − 2d)

a
.

In fact, during the accelerating stage of the bubble, we will have

(+)t2bubble =
(D − 2d)

a

and during the decelerating stage

(−)t2bubble =
(D − 2d)

a
,

which in total yields

T = tself-propulsion +

√

2 (D − 2d)

a
that is

T = 2

(

d

v
+

√

(D − 2d)

2a

)

.

A2. Deceleration stage

Remember that we considered planets A and B as static in a quasi-flat
space. In this case dx= dy= dz=0. This means that their proper time

is equal to their coordinate time (reinstating c): t= τ = x4

c .
The proper time τ measured in the spaceship, on the other hand,

must take into account the Lorentz transformations

τship = 2

(

d

γv
+

√

(D − 2d)

2a

)

,

where

γ =
1

√

1− v2/c2
.

If the radius ℜ of the bubble satisfies, as it should, ℜ≪ d≪D, one
may admit the approximation

τ ≈ T ≈
√

2D

a
.
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This clearly shows that T can be chosen as small as we like, by
increasing the value of a.

As outlined by Alcubierre, since a round trip will only take twice as
long, we can be back on the planet A after an arbitrarily short proper
time, both from the point of view of an observer on board of the space-
ship and from the point of view of an observer located on the planet.

The spaceship will then be able to travel much faster than the speed
of light while remaining on a time-like trajectory (which is inside its
local light-cone).
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