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Abstract: In this paper, we first recall the quantum theory of Louis
de Broglie which attempted to give the usual wave function a real and
truly physical nature, and which is closely associated to a massive
particle. The resulting Double Solution Theory is then interpreted in
terms of a physical fluid described in the framework of the Extended
General Relativity Theory (EGR theory) approximation. This ap-
proach may provide an explanation to the problem arising from the
“hidden” medium as set forth by the initial theory.
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Introduction

The original wave function first discovered by Louis de Broglie [1] in his
famous Wave Mechanics Theory is always acknowledged as a statistical
entity. Its physical meaning was almost totally denied in all subsequent
quantum field developments despite the Davisson and Germer experi-
ment, which actually detected the wave through diffraction of electrons
by a nickel crystal lattice.

This problem dates back from the Solvay Symposium of 1927 in
Brussels, when most of the physicists decided to adopt the so-called
Copenhagen School Concept of considering quantum physics on pure
statistical grounds. Throughout the remainder of his life, de Broglie yet
could not believe observable physical phenomena to only follow from
abstract mathematical wave functions.

In the late 1960’s, he improved his first theory called the double so-

lution interpretation of Quantum Mechanics, which describes a particle
as closely related to its physical wave and constantly in phase with it.
The theory is extremely simple and elegant, but to remain consistent,
it requires two constraints:

• The guided particle should permanently exchange energy and mo-
mentum from an external (unknown) medium which he named
“hidden thermostat”;

• In addition, the considered particle should also undergo small
energetic random perturbations.

In the past decades, many interesting theories have been provided for
explaining the nature of this “sub-quantum” medium, which is assumed
to exchange energy and momentum at the quantum level.

In this paper, we suggest to identify this “energy background” with
the persistent field of the EGR theory. The hydrodynamic interpreta-
tion for the particle’s probability density as depicted by de Broglie, is
here given with physical consistency.

Chapter 1. Interpretation of Wave Mechanics by Means of

Louis de Broglie’s Theory of Double Solution

§1.1. The reasons for implementing the theory

For almost a century, the wave-particle duality first discovered by Ein-
stein, in his theory of light quanta, has been the basis of present day
Quantum Physics. As an essential contribution, the wave mechanics
theory of Louis de Broglie has successfully extended this duality to all
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known particles. Shortly after, de Broglie further developed the Double
Solution Theory based on two striking observations.

In the framework of the Special Theory of Relativity, it is noticed
that the frequency ν0 of a plane monochromatic wave is transformed as

νc = ν0

√
1− β2 ,

while a clock’s frequency ν0 is transformed according to

νc =
ν0√
1− β2

with the phase velocity

ṽ =
c

β
=
c2

v

.

It is noticed that the four-vector defined by the gradient of the plane
monochromatic wave can be linked to the energy-momentum four-vector
of a particle by introducing Planck’s constant h, thus writing

W = hν , λ =
h

p
, (1.1)

where p is the particle’s momentum and λ is its wavelength.
If the particle is considered as containing the rest energy

M0 c
2 = hν0 ,

we may compare it to a small clock of a frequency ν0 so that when
moving with a velocity v= β c, its frequency, different from that of the
wave, is then

νc = ν0

√
1− β2 .

It can be further shown that the particle has an internal vibration
which is constantly in phase with the vibration of the surrounding wave.

In the spirit of the theory, the wave is regarded as a physical entity
having a very small amplitude which cannot be arbitrarily normed, and
which is distinct from the wave ψ having a statistical significance in the
usual quantum mechanical formalism.

Let us call ϑ the physical wave which is connected to the wave ψ
by the relation ψ = Cϑ, where C is a normalizing factor. The wave
ψ has then the nature of a subjective probability representation formu-
lated by means of the objective wave ϑ. Therefore, the wave mechanics
is complemented by the Double Solution Theory, so ψ and ϑ are two
solutions of the same equation.

If the complete solution of the equation representing the wave ϑ, or,
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if preferred, the wave ψ (since both waves are equivalent according to
ψ=Cϑ) is written as

ϑ = a(x, y, z, t) exp

[
i

~
φ(x, y, z, t)

]
, ~ =

h

2π
, (1.2)

where a and φ are real functions, the energy W and momentum vector
p of the particle localized at point x, y, z at time t are given by

W = ∂tφ , p = −gradφ , (1.3)

which in the case of a plane monochromatic wave, where one has

φ = h

[
ν t−

(αx+ βy + γz)

λ

]
,

yields equation (1.1) for W and p.

§1.2. The guidance formula and the quantum potential

Taking Schrödinger’s equation for the scalar wave phase ϑ in the exter-
nal potential U , we get

∂tϑ =
~

2im
∆ϑ+

i

~
Uϑ . (1.4)

This complex equation suggests that ϑ should be represented by two
real functions linked by two real equations, leading to

ϑ = a exp
iφ

~
, (1.5)

where a (the wave’s amplitude) and φ (its phase) are both real val-
ues. Taking this value into equation (1.4), we arrive at two important
equations

∂tφ− U −
1

2m
(gradφ)

2
=

~

2m

∆a

a
, (1.6)

∂ta
2 −

1

m
div

(
a2 gradφ

)
= 0 . (1.7)

If terms involving Planck’s constant ~ in equation (1.6) are neglected
(which amounts to disregarding quanta), and if we set φ=S, this equa-
tion becomes

∂tS − U =
1

2m
(gradS)

2
. (1.8)

As S is the Jacobi function, equation (1.8) is the Jacobi equation of
Classical Mechanics. Only the term containing ~

2 is responsible for the
particle’s motion being different from the classical motion.
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It can be interpreted as another potential Q, distinct from the clas-
sical potential U ,

Q = −
~
2

2m

∆a

a
. (1.9)

One has thus a variable proper mass

M0 = m0 +
Q0

c2
,

where, in the particle’s rest frame, Q0 is a positive or negative variation
of the rest mass, and it represents the “quantum potential” which causes
the wave function’s amplitude to vary.

By analogy with the classical formulae ∂tS=E and p=−gradS,
with E and p being the classical energy and momentum vector, one
may write

∂tφ = E , p = −grad φ . (1.10)

As in non-relativistic mechanics, where p is expressed as a function of
velocity by the relation p=mv, one eventually finds the following result

v =
p

m
= −

1

m
gradφ , (1.11)

which is the guidance formula; it gives the particle’s velocity, at point
x, y, z and time t as a function of the local phase variation at this
point. Inspection shows that relativistic dynamics applied to the vari-
able proper mass M0 eventually leads to the following result

W =
M0 c

2

√
1− β2

=M0 c
2
√
1− β2 +

M0v
2

√
1− β2

, (1.12)

known as the Planck-Laue formula.
In the relativistic form of the theory, equation (1.4) is replaced by

the Klein-Gordon equation applied to the wave function ϑ

2ϑ−
2i

~

eV

c2
∂tϑ+

2i

~

e

c

∑

xyz

Ax ∂xϑ+

+
1

~2

[
m2

0 c
2 −

e2

c2

(
V 2 −A2

)]
ϑ = 0 , (1.13)

where the particle’s charge e is acted upon by an electromagnetic field
with a scalar potential V (x, y, z, t) and a vector potential A(x, y, z, t).
Note that the d’Alembertian, as usual, is

2 =
1

c2
∂2

∂t2
−∆ .
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Inserting equation (1.5) into equation (1.13) yields the generalized
Jacobi equation (1.14) as well as another continuity equation (1.15)

1

c2
(∂tφ− eV )2−

∑

xyz

(
∂tφ+

e

c
Ax

)2
= m2

0 c
2+~

22a

a
=M2

0 c
2, (1.14)

1

c2
(∂tφ− eV ) ∂ta−

∑

xyz

(
∂xφ+

e

c
Ax

)
∂xa+

a

2
2φ = 0 , (1.15)

where on the right hand side of (1.14) we have introduced a variable
proper mass M0 defined by

M0 =

√
m2

0 +
~2

c2
2a

a
. (1.16)

Neglecting the terms in ~
2, equation (1.14) leads to

1

c2
(∂tS − eV )

2
−
∑

xyz

(∂xS + eAx)
2
= m2

0 c
2, (1.17)

which is the Jacobi equation for a charged particle moving in an elec-
tromagnetic field with scalar and vector potentials V and A, and con-
sidered in the framework of relativistic mechanics without quanta.

Keeping the terms in ~
2 and considering the proper mass M0 as

defined in equation (1.16), one gets

M0 c
2

√
1− β2

= ∂tφ− eV,
M0v√
1− β2

= − (gradφ+ eA) , (1.18)

thus, with β = v

c
, we find the relativistic guidance formula

v = −
c2 (gradφ+ eA)

∂tφ− eV
. (1.19)

For the Newtonian approximation with A=0 and ∂tφ− eV ∼=m0c
2,

equation (1.11) is found again.
Here, the quantum force results from the variation of M0c

2 as the
particle moves. For a monochromatic wave, the quantum potential is
constantly zero, and one simply has

Q =M0 c
2 −m0 c

2. (1.20)

In the non-relativistic approximation, c→∞ and 2a∼=−∆a.
Therefore we obtain

Q =

√
m2

0c
4 + c2~22a

a
∼= −

~
2

2m0

∆a

a
. (1.21)
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§1.3. Particles with internal vibration and the hidden thermo-

dynamics

The idea of considering the particle as a small clock is of central im-
portance here. Let us look at the self-energy M0c

2 as the hidden heat
content of a particle. One easily conceives that such a small clock has (in
its proper system) an internal periodic energy of agitation which does
not contribute to the momentum of the whole. This energy is similar
to that of a heat-containing body in a thermal equilibrium. Let Q0 be
the heat content of the particle in its own (resting) frame, and viewed
in a frame where it has a velocity βc. The contained heat in the second
frame will be

Q = Q0

√
1− β2 =M0 c

2
√
1− β2 = hν0

√
1− β2 . (1.22)

The particle thus appears at the same time as being a small clock
of a frequency

ν = ν0

√
1− β2

and a small reservoir of a heat

Q = Q0

√
1− β2

moving with the velocity βc.
If φ is the phase of the wave a exp iφ

~
, where a and φ are real, the

guidance theory states that

∂tφ =
M0 c

2

√
1− β2

, − gradφ =
M0v√
1− β2

, (1.23)

so the Planck-Laue equation can be written as

Q =M0 c
2
√
1− β2 =

M0 c
2

√
1− β2

− vp . (1.24)

Combining (1.23) and (1.24) results in

M0 c
2
√
1− β2 = ∂tφ+ v gradφ =

dφ

dt
.

Since the particle is regarded as a clock of a proper frequency M0c
2

h
,

the phase of its internal vibration expressed by ai exp
iφi

~
, with ai and

φi real values, will be

φi = hν0

√
1− β2 t =M0 c

2
√
1− β2 t ,

thus
d (φi − φ) = 0 . (1.25)
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The fundamental result agrees with the assumption according to
which a particle, as it moves in its own wave, remains constantly in
phase with it.

§1.4. The equations of continuity

The equations of continuity are (1.7) and (1.15). First we revert to
equation (1.7)

∂ta
2 −

1

m
div

(
a2 gradφ

)
= 0 .

Making use of the guidance law (1.11) and setting ρ=Ka2, where
K is a constant, equation (1.7) becomes

∂t ρ+ div(ρv) = 0 . (1.26)

In hydrodynamics, this equation represents the continuity equation.
The quantity ρdτ is the number of the fluid’s molecules in the volume
element dτ moved with the velocity v.

We denote by D

dt
the derivative taken along the direction of motion

of the molecules. The expression

D (ρdτ)

dt
= 0

then expresses the conservation of the fluid.
With a normalization factor, ρdτ = a2 (x, y, z, t) dτ is here assumed

to be the probability of finding a single particle at time t in the volume
element dτ , at x, y, z.

As the statistical wave ψ solution of the linear equation is purely
virtual, it can be defined as everywhere proportional to the real wave ϑ,
and so we may set ψ=Cϑ, where C is the normalization factor chosen
so as to satisfy ∫

|ψ|2 dτ = 1 .

Chapter 2. The Random Perturbation in the Framework of

the EGR Theory

§2.1. The physical requirement

With the simple hydrodynamic picture (1.26), and with the constant
K taken to be 1, it is assumed that a2 (xa) = ρ multiplied by dτ gives,
with a normalizing factor, the probability of finding a single particle
in the volume element dτ , which is the absolute value of the statistical
wave

∫ ∣∣ψ2
∣∣ dτ .
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This hydrodynamic model is however not adequate by itself for it
contains nothing to describe the actual location of the particle: by ex-
amining a simple quantized state of a hydrogen atom, inspection shows
that the guidance formula for the electron gives v=0, which makes
equation (1.26) irrelevant.

We may however circumvent this difficulty by considering a random
perturbation of Brownian character superimposed onto the guided mo-
tion. In that case, the particle’s regular motion obeying the guidance
law should be subjected to a slight random influence of hidden origin,
so as to switch from one guided trajectory to another.

The “main” trajectory would then appear as a “mean-valued mo-
tion”.

Such a concept was brought forward by Bohm and Vigier [1] who
referred to this invisible “thermostat” as the “sub-quantum medium”.
Referring to the same interpretation of the continuity equation (1.26),
they showed that when random fluctuations would perturb the density
ρ, a systematic tendency must exist for fluid elements to move to certain
regions in such a way as to maintain the stability of the mean density ρ.

This tendency may find its origin in a kind of pressure which tends
to correct the deviation.

A good example is a gas in a gravitational field in which the pres-
sures automatically adjust themselves to maintain a local mean density
close to

ρ = ρ0 exp
(
−
mgz

KT

)
,

where g is the acceleration of the force of gravity, and K is Boltzmann’s
constant.

It should be stressed however, that the suggested medium does not
serve as a universal reference system.

§2.2. The EGR picture

The velocity of light c will be taken here to be equal to 1.
When V =0 and A=0, in a Riemannian situation, the relativistic

continuity equation (1.15) may be conveniently generalized as

(
gbc ∂bφ

)
∂c a+

1

2
a2Riem φ = 0 , (2.1)

where 2Riem= gbc∇b∇c.
In the framework of the Riemannian relativistic hydrodynamics, the

classical continuity equation (1.26) for a neutral mass density ρ is

∇a (ρu
a) = 0 , (2.2)
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where the unit velocity ua = dxa

ds
obeys

gab u
aub = gabuaub = 1 .

If we define the “guidance lines” by the differential equations (in the
absence of external potentials)

gbc ∂c φ = ub,

where ub generalizes the three-spatial guidance velocity v defined by the
equation (1.19), which characterizes the flow lines of the fluid of proper
density ρ

v = v
β =

uβ

u4
. (2.3)

To maintain the form given by (1.26) it is easy to see that we must set

ρ = a2u4 (2.4)

and, taking into account (1.19), we obtain

ρ = a2 (− ∂tφ) , (2.5)

with the space-time signature (−+++).
To apply the generalized equation (2.2), we must start from the

tensor
Tab = a2uaub (2.6)

and the equations
ua∇aub = 0 , (2.7)

which are a differential systems satisfied by the flow lines, which ex-
presses that those lines are geodesics of the Riemannian metric ds2.

Following now the above example of a pressurized gas, we consider
a neutral perfect fluid whose well-known tensor is

Tab =
(
a2 + P

)
uaub − P gab (2.8)

with a prescribed equation of state a2 = f(P ).
Equation (2.7) takes the form in a holonomic frame

u̇b = hab ∂
aU , (2.9)

(here hab = gab −uaub is the projecting tensor) with

U =

∫ P2

P1

1

a2 + P
dP .
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The quantity u̇b represent the acceleration of the flow lines satisfying
the differential system (2.9). Those flow lines are everywhere tangent
to the four-unit vector uc.

The differential system (2.9) is also written as

ua∇aub − ∂a (Uh
a
b ) = 0 . (2.10)

In this case, the continuity equation becomes now

∇b (a
2ub)− a2ub∂bU = 0 . (2.11)

By doing so, our final aim is to put in evidence a “perturbed” density
ã2, while keeping the usual classical form

∇b (ã
2ub) = 0 . (2.12)

A rigorous demonstration of Lichnérowicz [3] states, concerning the
aforementioned flow lines, that:

“. . . the flow lines satisfying the differential system∗ u̇b =hab ∂
aU

are geodesics of the metric

ds2 ′ = e2Uds2

conformal to the Einstein metric ds2.”

In other words, the presence of an internal pressure P readily induces
a conformal factor (here e2U ), which is referred to as the fluid index.

Let us now introduce ∇′ as the covariant derivative operator of the
conformal metric ds2 ′. We also define the “current vector” Ca of the
considered fluid, whose components are

Ca = eUua.

The current vector C ′ of ds2 ′ has covariant components defined by

C ′

a = Ca ,

so as to remain unitary in the new metric

gab′ C ′

aC
′

b = e−2Ugab (eUua)(e
Uub) = 1 .

The contravariant components of the vector C ′ are

Ca′ = gab ′ Cb = e−Uua.

∗The equation u̇b =hab ∂
aU quoted by Lichnérowicz is given by formula (2.9) of

this paper. — P.M.
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Inspection shows that these flow lines are geodesics of ds2 ′, accord-
ing to

Ca′ ∇′

a C
b ′ = 0 , (2.13)

which are fully equivalent to equations (2.10).
Likewise, the continuity equation (2.11)

∇a (a
2ua)− a2ua∂aU = 0

must coincide with the one describing the fluid density ã2

∇′

a (ã
2Ca′) = 0 , (2.14)

which amounts to the recognition that the perturbation exerted on the
fluid density ã2, i.e. the pressure P , is implicitly described by the con-
formal derivative ∇′

{
d
ab

}′

=
{
d
ab

}
+
(
δdb ∂aU + δda ∂bU − gab∂

dU
)
.

However, a conformal metric is not suitable for describing the phys-
ical influence of an external medium which is defined in the initial ds2.

This model has nevertheless an interesting virtue: following the same
pattern, we will see that it is possible to build a plausible representation
in the framework of the EGR theory.

§2.3. The influence of the metric fluctuations

In the extended formulation of General Relativity, the EGR theory [4],
we may establish a continuity equation analogous to (2.14)

Da (ã
2ua

EGR
) = 0 , (2.15)

where the four-velocity ua
EGR

has the form defined in the EGR theory [4].
We suggest the following interpretation. The fluctuating density ã2

is related to the general connection defined in the EGR theory

Γd
ab =

{
d
ab

}
+
(
Γd
ab

)
J
=

{
d
ab

}
+

1

6

(
δda Jb + δdb Ja − 3gabJ

d
)
.

Unlike the conformal metric, which does not present a physical sig-
nificance, the EGR theory provides a consistent scheme which enables
to consider a one-to-one influence from an external medium manifestly
represented by the “residual field” T ab

field
.

The “approximated” Riemannian continuity equation defined in the
metric ds2, which generalizes (2.12), should be written

∇a

(
〈ã2〉ua

)
= 0 . (2.16)
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The density a2 in the Riemannian continuity equation would then
appear as a mean value of the “instant” fluctuating density ã2 of the
fluid, which actually obeys the equation (2.15) on the very small scale.

According to the EGR postulate, like for elementary particles, the
Double Solution Theory is always considered in the framework of the
dominant Riemannian geometry.

Bearing this in mind, remember that the wave ϑ is a physical en-

tity, and so is the amplitude a, therefore the relativistic hydrodynamics
applied here is fully legitimate.

Within the EGR theory, the Riemannian part of the “residual field”
at its lowest level (but not vanishing) supplies the energy background
(“thermostat”) required by de Broglie’s theory, and the small random
disturbances are directly related to the covariant fluctuations of the
metric through the non-Riemannian part of the persistent field.

Concluding remarks

As a concluding remark, let us stress that in this study we have made
use of non-linear considerations, as we should in General Relativity, in
accordance with de Broglie’s ideas.

Francis Fer [5] has constructed a non-linear equation corresponding
to the equation (1.13), and showed that in this general case, the rela-
tivistic continuity equation (2.1) defined in a Minkowski space remains
unaffected. This remarkable result lends support to the aforementioned
interpretation based on the EGR theory.
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