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Abstract: In the recently presented extended formulation of Gen-
eral Relativity (the EGR theory), a “persistent field” expressed by
a gravity-like energy-momentum tensor has been suggested. Due to
the non-Riemannian curvature manifested by the theory, this field
tensor is a true entity unlike Einstein’s pseudo-tensor. Here this ten-
sor is considered in the case of a charged particle in a gravitational
field. In the “gravitational radiation damping”, the usual relativistic
treatment leads to a mass renormalization process. In the framework
of the presented theory, this renormalization is not longer required.
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Notations:

To completely appreciate this article, it is imperative to define some
notations employed.

Indices. Throughout this paper, we adopt the Einstein summation
convention whereby a repeated index implies summation over all val-
ues of this index:

4-tensor or 4-vector: small Latin indices a, b, . . . = 1, 2, 3, 4;

3-tensor or 3-vector: small Greek indices α, β, . . . = 1, 2, 3;

4-volume element: d4x;

3-volume element: d3x.

Signature of space-time metric:

Hyperbolic (+−−−) unless otherwise specified.

Operations:

Scalar function: U(xa);

Ordinary derivative: ∂aU ;

Covariant derivative in GR: ∇a;

Covariant derivative in EGR: Da or ′, (alternatively).

Tensors:

Symmetrization: A(ab) =
1
2
! (Aab +Aba);

Anti-symmetrization: A[ab] =
1
2
! (Aab − Aba);

Kronecker symbol: δab = (+1 if a = b ; 0 if a 6= b);

Levi-Civita tensor: ǫabcd (where ǫ1234 = 0).

Three-dimensional vectorial quantities:

P = Pα .
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Introduction

As a follow up to my recent paper The EGR Theory: An Extended

Formulation of General Relativity [1], we now turn to the consequences
of this field contribution to an accelerated charged particle.

We recall the classical concept: In an electrostatic situation, the
energy of a charged particle such as the electron, is eV

2 , where V is
the scalar potential of the field generated by the charge e. However,
the Special Theory of Relativity tells us that any elementary particle is
assumed to be a point mass or charge (non-elastic body), thus implying
that at its “centre” R=0, where V = e

R
must become infinite. As a

result, the proper energy (i.e. the proper mass of the electron) would
also become infinite, which is physically irrelevant.

The usual way to overcome this difficulty leads to an implicit kind
of external negative “mass” which compensates for the divergent one:
this is accepted as the “renormalisation” process.

The free field predicted by the EGR theory is introduced in in the
form of a “gravitational” energy-momentum tensor density (ℑab)field
next to the mass tensor density (ℑab)mass, which is the “continuation”
of the classical energy-momentum pseudo-tensor so far associated with
matter. In the framework of my understanding, this extra field, linked
with the space-time segment curvature, naturally allows us to avoid
the renormalisation requirement, providing the general electrodynamics
with a clear and consistent explanation. The EGR Universe is entirely
described by two curvatures. Accordingly, the present theory implicitly
involves the EGR Ricci tensor Rab rather than the Ricci tensor Gab.

We begin this paper by recalling that, according to the Special The-
ory of Relativity, an accelerated electron will radiate and produce a
reactive damping force in addition to the mechanical inertia force [2].
In the framework of the classical representation of the General Theory
of Relativity (we will refer to it as GR), a charged particle does not
suffer a reactive damping as long as its absolute acceleration is uni-
form. We may then expect that this particle actually radiates when
deflected by a gravitational field i.e. when a kind of “Bremßtrahlung”
effect takes a place; however, it has been shown that a more subtle phe-
nomenon occurs. As has been pointed out by De Witt and Brehme [3],
a plane or spherical sharp pulse of light when propagating in a curved
4-dimensional hyperbolic manifold, gradually develops a “tail” which
is responsible for this electrogravitic “Bremßtrahlung”. This “thinning
out” of the elementary waves appears as an extra term in the relativistic
equation of a moving charge [2].
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Chapter 1. Relativistic Electrodynamics

§1.1. Electromagnetic radiation: variable fields

Variable potentials. Here, the charges are assumed to be located
inside a volume element dϑ where the variable charge density is µ(t).

Inside this volume, the scalar electrostatic potential V , which is
derived from the electric field E, is

E = − gradV. (1.1)

Maxwell’s second group of equations states that the variable field
produced by arbitrary moving charges obeys the equation

∂bF
ab = −4π

c
ja, (1.2)

ja = µ
dxa

dt
, (1.3)

where ja is the four-vector density of charge µ. By setting the Lorentz
gauge, ∂aA

a = 0, we realise that

∂2Aa

∂xb ∂xb
=

4π

c
j a, (1.4)

which can be decomposed into two equations

∆A− 1

c2
∂2A

∂t2
= −4π

c
j (1.5)

and

∆V − 1

c2
∂2V

∂t2
= 4πµ . (1.6)

If de is the variable charge in a given volume element dϑ, the charge
density is

µ = de(t) δR , (1.7)

where δ is the Dirac function which will be analysed in the next section,
while R is the distance from the origin of the coordinates, a unique point
at which δR is not zero.

Retarded potentials. For an arbitrary charge distribution µ(xa), we
write

de = µdϑ .

For a volume ϑ we have

µ = e δR .
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In this case, equation (1.4) can be reduced to a plane wave equation
whose solution is of the type

V = f

(

t− R

c

)

.

This represents the progression of the potential V along R, however,
with some retarded amplitude measured at the time t. This retarded
amplitude results from the signal velocity limited by the light velocity c.
Adding V0 and A0 to the solutions of equations (1.4) and (1.5), we have

A =
1

c

∫

(

jt−R/c

)

dϑ

Ra
+A0 , (1.8)

V =

∫

(

µt−R/c

)

dϑ

Ra
+ V0 . (1.9)

If Ra(t)= ra − (ra)0 is the distance to an electron e observed in
P (xa) at t, the state of motion of the charge at an earlier time t′ is
determined by the equation

t′ = t− R(t′)

c
. (1.10)

In the resting frame at t′, the field at P (t) is simply given by the
Coulomb potential

V =
e

c
(t− t′) since A = 0 . (1.11)

In a four-dimensional situation, in any arbitrary frame, we find the
potential in the form

Aa = e
ua

Rb
ub, (1.12)

which is the well-known expression of the Liénard-Wiechert potential,
where

Ra =
[

c (t− t′) , ra − r′a
]

.

§1.2. Electromagnetic radiation: radiative damping

General coordinate system. On a general metric manifold, the dy-
namical equations for the electron of mass m0 and charge e, in an elec-
tromagnetic field, are

m0
Dua

ds
=

e

c
F abub , (1.13)

where ua = dxa

ds
is the four-velocity and the Maxwell tensor Fab is

Fab = DaAb −DbAa . (1.14)
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Here, the electromagnetic field’s energy-momentum tensor is

Tab =
1

4π

(

FacF
c ·
·a +

1

4
gabFckF

ck

)

. (1.15)

In a general coordinate reference frame, we assume the following
dynamical equations for a particle at za

ża =
Dza

dτ
= ub Db u

a, (1.16)

z̈a =
Dża

dτ
=

dża

dτ
+ Γa

bd ż
b żd, (1.17)

...
z a =

dz̈a

dτ
+ Γa

bd z̈
b żd, (1.18)

where τ is the proper time of the particle∗.

Three-dimensional radiative damping. An arbitrary distribution
of charges with the velocities slow to c does not substantially vary during
the time R

c . Therefore we expand µt−R/c and jt−R/c into series of R
c .

Up to third order, we find for the scalar potential

V = − 1

6c3
∂3

∂t3

∫

R2µdϑ . (1.19)

Since the vector potential A already contains a term in 1
c , we can

restrict the expansion to second order. We take

A = − 1

c2
∂tf

∫

j dϑ ,

then follow with the transformations

A′ = A+ grad f and V ′ = V − 1

c
∂tf .

Then we choose the function f so that the scalar potential V van-
ished, i.e.

f = − 1

6c2
∂2

∂t2

∫

R2µ dϑ .

Hence

A′ = − 1

c2
∂t

∫

j dϑ− 1

6c2
∂2

∂t2
grad

∫

R2µdϑ .

∗The connection coefficients (Christoffel symbols) are here assumed general for
keeping the theory compatible with the EGR theory, we denote Γa

bd
instead of the

conventional Christoffel symbols
{

a

bd

}

of General Relativity. See Page 178.
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Thus, we arrive at the formula

A = − 1

c2
∂t

∫

j dϑ− 1

3c2
∂2

∂t2

∫

Rµdϑ . (1.20)

The first-order terms of the field equation exhibit an additional force
exerted on the charge. This force depends on the time derivative of the
charge’s acceleration. This force, resulting from a higher approximation,
is called the Lorentzian damping force

Fα =
2

3

e2

c3
...
z α . (1.21)

The equation of motion of the electron without external fields and
solely subjected to (1.21), is due to the action of the charge itself

m0
...
z α =

2

3

e2

c3
...
z α . (1.22)

Ultrarelativistic case. In the Special Theory of Relativity, the equa-
tions of motion for the electron should be written

m0
dua

ds
=

e

c
F abub + fa. (1.23)

For the state of low velocity of the electron, the relation (1.23) should
reduce to the expression (1.22). This condition is satisfied when

fa =
2

3

e2

c

(

d2ua

ds2
− uaub d

2ub

ds2

)

. (1.24)

The second term in the brackets is chosen so as to satisfy the physical
condition faua =0, and so (1.24) can be written equally as

fa =
2

3

e2

c3

(

...
z a − 1

c2
ża z̈2

)

. (1.25)

Chapter 2. Trajectory of a Charged Particle in a Gravita-
tional Field

§2.1. Brief reminder of the EGR theory

Free gravity field. In the EGR theory, the field equations

Gda = Rda −
1

2
gdaR

are generalized to

Gda = Rda −
1

2

(

gdaR− 2

3
Jda

)

, (2.1)
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where Gda =(Gda)EGR, The antisymmetric Ricci tensor Rda=(Rda)EGR

is constructed with the general connection

Γ = { }+ (Γ)J (2.2)

with the latter coefficients (Γ)J , additional to the conventional Christof-
fel symbols { }, depending on the extra “segment curvature” through
the 4-vector J according to

Dgab =
1

3

(

gacJb + gcbJa − gabJc
)

dxc.

The new generalized field equations are written down as

Rab + Fab = κ
[

(ℑab)mass + (ℑab)field
]

, (2.3)

where the (ℑab)field represents the “energy-momentum” free field tensor
density which is persistent even in the source-free EGR field equations.

Having defined the Lagrange density H = Rab
Rab with

Rab =
∂H
∂Rab

,

the free field density is inferred from the canonical equations

(ℑa
b )field =

1

2κ

[

Hδab − ∂bΓ
e
dk

∂H
∂
(

∂aΓe
dk

)

]

(2.4)

(we have decomposed the curvature tensor density Rbc=
√−g Rbc into

a symmetric part Gbc and an antisymmetric part Abc),

Rbc = Gbc +Abc with Gbc = Rbc + Ebc

so that
(Ebc)′,c = 0 and J a = (Aba)′,a = ∂aAba

(due to the antisymmetry of Aba), we have a set of

J a =
√−g Ja,

Gab =
√−g gab,

Rbc =
√−g Rbc,

(Gbc)′,c = −5

3
J b,

(Gbc)′,a = −1

3
δbaJ c + δcaJ b,
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where ′, is the covariant derivative formed with Γ in (2.2). In fact, within
the framework of my theory, the field equations (2.3) always have their
second term, which corresponds to the free field tensor density

Rab + Fab = κ (ℑab)field . (2.5)

Thus, in the EGR theory, in the neighbourhood of matter, the mass
density (ℑab)mass increasingly dominates over the free field density
(ℑab)field. This is the quasi-Riemannian regime of the classical theory.

Four-momentum vector of the free field. In tensor notation, we
write the global four-energy momentum vector for the field and mass as

P a =
1

c

∫

[

(T ab)field + (T ab)mass

]√
−g dSb

across any hypersurface. Inspection shows that the pseudo-tensor ℑab is
a true tensor quantity lending support to the theory of a free field (which
is merely the natural extension of the Riemannian gravitational field),
for which the quantity is classically attributed to the mass. When inte-
gration is performed on the volume ϑ containing this mass, the tensor
field (Tab)field vanishes inside the matter, thus only the time component
of the four-momentum vector remains (i.e. we are in the Riemannian
regime)

P 4 = m0c =
1

c

∫

[

−(T a
a )mass

]√−g dϑ

or

m0c
2 =

∫

[

(T 1
1 )mass + (T 2

2 )mass + (T 3
3 )mass − (T 4

4 )mass

]√−g dϑ

that is the total mass of the given corpuscle (particle). If distantly
located from the source, (ℑab)mass → 0 and

P a ≈ 1

c

∫

(ℑab)field dSb . (2.6)

§2.2. Gravitational influence

§2.2.1. Dirac bi-tensors

Dirac’s distribution function. We now consider the delta function

introduced by P.A.M. Dirac [4]

δ(x′ − x) , (2.7)

which is known as the Dirac distribution function

δ(x) = 0 for x 6= 0 , δ(0) = ∞ , (2.8)
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hence ∫ +∞

−∞

dx = 1 . (2.9)

If f(x) is a continuous function at the point x = 0, we have
∫ +∞

−∞

δ(x)f(x)dx = f(0) (2.10)

under a more general form
∫

δ(x − a)f(x)dx = f(a) , (2.11)

where the integration domain contains the point x= a, and f(x) is con-
tinuous at the point x = a.

We write (2.11) as

〈δ(x, x′), f(x′)〉 = f(x) . (2.12)

The notation
δ(x, x′) (2.13)

is called the Dirac bi-scalar. It will be generalized in the next section.

Displacement bi-tensors. On a differential manifold Vn, we are go-
ing to consider a point x′ located in the neighbourhood of another point
x. Along the geodesic connecting x′ to x, we define a “displacement”
which represents a “canonical isomorphism” (basis-independent) of the
tangent space Tx at x on the manifold, into the tangent space Tx′ at x′.
The free bases ea(x) and ec(x

′) are attributed to the neighbourhoods.
The relevant isomorphism therefore defines a “bi-tensor”, which we

call a displacement tensor, and denote as

tc
′

a , (2.14)
hence

gab t
a
c′t

b
d′ = gc′d′ . (2.15)

Here we have

tac′ = gc′d′ td
′

a = gab t
b
c′ , (td

′

a tbd′ = tda′ t
b′

d = δba) , (2.16)

t = det ‖ tac′(x)‖ =
√

det ‖gab(x)‖
√

det ‖gc′d′(x)‖ , (2.17)

the particular case x = x′ implies

tc
′

a (x, x
′ = x) = δc

′

a or tac′(x, x
′ = x) = gac′ , (2.18)

∇a t
d′

c (x, x′ = x) = ∇c′ t
d′

a (x, x′ = x) = 0 . (2.19)
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If Vn is an Euclidean space of the given signature (e.g. Minkowskian),
we simply have

tac′ = ea ec′ . (2.20)

We choose the space-time signature, as earlier, to be

gab = diag(+−−−) , (2.21)

so the determinant is g=det ‖gab‖< 0, while
√−g > 0.

§2.2.2. The Feynman propagator (reminder)

The Pauli-Jordan propagator (reminder). In the quantized field
technique, the commutation function of the scalar field is introduced.
It satisfies

D(x) = D+(x) +D−(x) (2.22)
with

D+(x) = −D−(−x) =

=
1

(2π)3
i

∫

[

exp(iP x)
]

δ(P 2 −m2
0) θ(P

4) d3P . (2.23)

This commutation function or the Pauli-Jordan propagator is expli-
citly written

D(x, x′) =
1

(2π)3
i

∫

[

exp(iP x)
]

ǫ(P 4) δ(P 2 −m2
0) d

3P , (2.24)

where
ǫ(P 4) = θ(P 4)− θ(−P 4)

is the “sign function”

ǫ = +1 for P 4 > 0 ,

ǫ = −1 for P 4 < 0 .

The upper indices + and − indicate, respectively, the positive or
negative energy parts contributed into the complete commutator D,
which corresponds to the future and the past, and whose boundaries
are the characteristic hyperboloids in the Minkowski representation.

The Green function. The Jordan-Pauli commutation relation is an
odd function

D(x, x′) = −D(x′, x) . (2.25)

This (scalar) propagator is Lorentz invariant. It satisfies the homo-
geneous Klein-Gordon equation

(

− ∂a∂a −m2
0

)

D(x) = 0 . (2.26)
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We then define the Green function of the scalar field by the equation

(− ∂a∂a −m2
0) G(x, x′) = − δ(4)(x, x′) , (2.27)

and then, passing to the momentum representation

G(x, x′) =
1

(2π)4

∫

[

exp
(

iP (x, x′)
)]

G(P ) d4P , (2.28)

we obtain, for G(P ), the expression

G(P ) =
1

m2
0 − P 2

. (2.29)

Writting the denominator as

P 2 = (P 4)2 − (P2 +m2
0) , (2.30)

we see that for a given P2, the time component P4 has two poles

P4 = ±E , (2.31)

where the total energy of the particle is

E =
√

P 2 +m2
0 . (2.32)

In order to remove this ambiguity when integrating (2.29) over d4P ,
the Feynman contour rules should be used to circumvent the poles. First
we consider the “retarded” Green function defined by the condition

G
−
(x, x′) = 0 for x4 − x′4 < 0 . (2.33)

We then remark that the function (2.29) is not substantially modi-
fied, if multiplied by exp

[

− ǫ(x4 − x′4)
]

, where ǫ > 0,

G
−
exp

[

− ǫ(x4 − x′4)
]

= Gǫ , (2.34)

and it can thus be represented by

G
−
(x, x′) = lim

ǫ→0
Gǫ , (2.35)

and Gǫ is defined by (2.31), hence satisfies
[

∆− (∂t + ǫ)
2 −m2

0

]

Gǫ = − δ(x, x′) . (2.36)

In the momentum representation, when ǫ→ 0, we have

Gǫ =
1

m2
0 − (P 4 − iǫ)2 + P2

−→ 1

m2
0 − P 2 − 2iǫP4

, (2.37)
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and (2.31) takes the form

G
−
(x, x′) =

1

(2π)4

∫

exp [iP (x, x′)]

m2
0 − P 2 + 2iǫP 4

d4P . (2.38)

The same effect can be achieved if one integrates along the real axis
by shifting the poles by an infinitesimal mass of the particle in the
complex plane.

In the same way, the advanced Green function defined by

G
+(x, x′) = 0 , for x4 − x′4 > 0 , (2.39)

which satisfies (3.36), is of the form

G
+(x, x′) =

1

(2π)4

∫

exp(iPx)

m2
0 − P 2 + 2iǫP 4

d4P . (2.40)

The integral

G(x) =
1

(2π)4

∫

exp(iPx)

m2
0 − P 2

d4P (2.41)

can be taken over the principal value, upon being separated into real
and imaginary parts

1

x+ iǫP 4
=

P

x
− iπ δ(x)ǫ(P 4) , (2.42)

and we obtain

P

(2π)4

∫

exp(iPx)

m2
0 − P 2

d4P =
1

2
ǫ(x4)G(x) . (2.43)

Local bi-tensors on a four-dimensional manifold. Let us recall
that the simplest example of a bi-tensor is the product of two local
vectors taken at the different space-time points x and x′

Ak(x) and Ba(x
′) , (2.44)

Ck
a (x, x

′) = Ak(x)Ba(x
′) . (2.45)

We shall here adopt De Witt’s convention that indices taken from
the Latin characters a . . . k are always to be associated with the point x′

(denoted, from now, by z), while indices taken from k to y, are always
associated with the point x.

The transformation law for the bi-tensor (2.45) is given by

C′k
a =

(

∂x′k

∂xm

)(

∂zb

∂z′a

)

Cm
b . (2.46)
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The Dirac bi-scalar (2.13) extended to the Minkowski space is

δ(4)(x, z) = δ(x4−z4)δ(x1−z1)δ(x2−z2)δ(x3−z3) =

= δ(4)(z, x) , (2.47)

and is also called the bi-density.
We also define the geodesic interval bi-scalar s(z, x) by the invariant

gkm δks δms = gab∂as ∂bs = ±1 (2.48)
with

lim
x→z

s = 0 .

§2.2.3. Trajectory of a charged particle

World tube. Let us consider a particle describing a world line whose
point coordinate will always be denoted by z. We construct a small
sphere surrounding the particle. The energy-momentum flow will be
determined across the surface. In the course of time, such a sphere
generates a hypersurface called a world tube.

We begin by introducing, at the point z on the world line of the
particle, three unit vectors orthogonal to each other and to the world
line itself

na
αnβa = δβα , nαa ż

a = 0 . (2.49)

We next introduce a set of direction cosines ς satisfying

ςα ςα = 1 (2.50)

in terms of which we can specify the direction, relative to na
α, of an

arbitrary unit vector perpendicular to the world line at z.
Then, in the direction of this arbitrary vector, we construct a geo-

desic from z extending throughout a fixed distance ξ to a point x of the
“tube wall”. The coordinates at the point z depend on the direction
cosines ςα and on the proper time τ at this point, which is explicitly
expressed at the tube wall by the function xk(ς, τ).

Let us set up a bi-scalar σ related to the distance ξ as

σ =
1

2
ξ2,

whence
∂aσ = − ξnαa ς

α , (∂aσ) ż
a = 0 . (2.51)

A pair of independent variations δ1ςα, δ2ςα in the direction cosines
defines an element dΩ of solid angle by the relation

ςαdΩ = ǫαβγ δ1ς
β δ2ς

γ ,
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or in virtue of (2.51), we have

∂q∂aσδ3x
q = ςadξ ,

or

δ3x
q = −(Dqa)−1 ςadξ , Dqa = − ∂q∂aσ .

We define a “tube section” as

dSq = ǫqruw δ1x
r δ2x

u δ3x
w

and with ∆=−t−1 det ‖−Dqa‖, where t is the determinant (2.17), we
obtain

dSq = − 1

c
√−g

∆−1 Dqa ż
a ξ2dξdΩ . (2.52)

§2.2.4. Dynamical equations for a particle

The conserved energy-momentum tensor. Let L denotes the sur-
face of the world tube limited by two sections of hypersurfaces S1 and
S2 corresponding to two proper times τ1 and τ2 (with τ1 < τ2).

We choose the integration volume d4x as a portion of the tube,
in order to express an integral conservation condition for the energy-
momentum bi-tensor density ℑqr.

However, one cannot integrate the divergence of ℑqr over the four-
volume (at x) d4x, to replace the volume integral by an integral over
the hypersurface Sr containing z, since Gauss’ theorem is not longer
applicable for a bi-tensor.

There is nevertheless a natural procedure to overcome this difficulty
by introducing the displacement bi-tensor taq in order to refer to the
contributions into the integral

Ia =

∫

(taq ∂rℑqr) d4r (2.53)

at the point x back to some fixed point z.
The latter integral becomes a local four-vector at z where

• xa corresponds to xq, and

• x′
a corresponds to za.

Let us then consider the integral over S1, S2 and the volume ϑ, the
conservation condition for ℑab is then written down as

1

c

∫

(taq ∂rℑqr) d4x = 0 , (2.54)
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Integrating by parts

1

c

(
∫

L

+

∫

S1

+

∫

S2

)

taq ℑqr dSr −
1

c

∫

ϑ

(∂rt
a
q)ℑqr d4x = 0 (2.55)

with zero contribution of the last integral, and considering the replace-
ment

∫

L

−→
∫ τ2

τ1

∫

4π

, (2.56)

we can write (2.55) in the limit ξ → 0, while taking (2.52) into account,

lim
ξ→0

1

c

∫ τ2

τ1

∫

4π

taqℑqrdSr +m0

[

tab′
(

z(τ ′), z(τ)
)

żb
′

(τ ′)
]τ ′=τ2

τ=τ1
−

−m0

∫ τ2

τ1

∂r′t
a
b′
(

z(τ ′), z(τ)
)

żb
′

żr
′

(τ ′) dτ ′ = 0 . (2.57)

The next step is to let τ1 and τ2 both approach τ , and denoting
their infinitesimal separation in the limit by dτ , we express the relation
(2.57) as follows

m0 z̈adτ = − lim
ξ→0

1

c

∫

taq ℑqrdSr . (2.58)

The geodesic principle is obviously given by

m0 z̈a = 0 . (2.59)

In the framework of the Euclidean approximation, when the parti-
cle’s trajectory is taken along x, the latter equation reduces to

m0
d2x

dτ2
= 0 . (2.60)

Chapter 3. Gravitational Damping

§3.1. Green functions on a curved manifold

§3.1.1. Scalar Green functions

Elementary solutions of J. Hadamard. In a non-Euclidean space,
the second derivatives of any vector or tensor are not equivalent

(DeDk −DkDe)A
h...
d... = −R

h···
·iek A

i...
d... − 2Γi

keDiA
h...
d... +R

i · ··
·dkeA

h...
i... . (3.1)

From the identities, the equations

−DeF
de = jd (3.2)
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read

−√−g gdhgekDe (DhAk −DkAh) =

=
√−g gekDeDkA

d −√−g DdDkA
k −√−g R

cdAc = − jd, (3.3)

and by fixing a gauge
DkA

k = 0 , (3.4)

we have √−g
(

gekDeDkA
d − R

dhAh

)

= − jd. (3.5)

Consider then the vector wave equation

gekDeDkA
d − R

dhAh = 0 . (3.6)

Following Hadamard, we shall try to find so called “elementary so-
lutions” corresponding to Green functions. We can then infer the par-
ticular solutions of (3.5).

The Feynman propagator. We first consider here the scalar wave
equation on a four-dimensional manifold

gdh∂d∂hA = 0 . (3.7)

Here, we find the elementary solution which is a bi-scalar having the
form

G
(1) =

1

(2π)2

(

u

ξ
+ b ln |ξ|+w

)

, (3.8)

where u, b, w are bi-scalars satisfying the normalization condition

lim
x→z

u = 1 . (3.9)

After some algebra, we show the validity of the equation

u−1∂du =
1

2
∆−1∂d∆ , (3.10)

which, with the boundary condition (3.9), has the unique solution

u =
√
∆ . (3.11)

Eventually we arrive at

lim
x→z

b =
1

12
G . (3.12)

Separating the full Green function GF into real and imaginary parts

G
F = G

(1) − 2iG , (3.13)
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where

G
F =

1

(2π)2

[ √
∆

(ξ + i0)
+ b ln(ξ + i0) +w

]

(3.14)

is identified with the Feynman propagator.
The formula (2.42) becomes

1

ξ + i0
=

p

ξ − πiδ(ξ)
(3.15)

and
ln (ξ + i0) = ln |ξ|+ πiǫ(−ξ) (3.16)

with the sign function such that

ǫ(ξ) = 0 for ξ < 0
and

ǫ(ξ) = 1 for ξ > 0 .

The scalar Green function corresponding to the bi-scalar b can be
computed as

G =
1

8π

[√
∆ δ(ξ)− bǫ(−ξ)

]

. (3.17)

§3.1.2. Vector Green functions

Hadamard solutions. Consider now the wave equation

ghkDhDkAd + R
·h
d· Ah = 0 . (3.18)

The procedure is entirely analogous to the above, thus we introduce
the elementary solution of the form

G
(1)
qa =

1

(2π)2

[

uqa

ξ + bqa
ln |ξ|+wqa

]

, (3.19)

where the functions uqa, bqa and wqa are now bi-vectors. Normalization
for uqa leads to

lim
x→z

uqa(x, z) = gqa(z)

and, after some algebra, we find

uqa =
√
∆ tqa . (3.20)

Making use of the extension, for the bi-vector bqa,

bqa = tqa

(

1− 1

12
R

be∂bσ∂eσ +O(s2)

)

(3.21)
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at the limit

lim
x→z

bqa = −1

2
tbq

(

Rab −
1

6
gabR

)

. (3.22)

The presence of the determinant (∆ symbol) in (3.20) reveals the
singular behaviour of the elementary waves originating from the point
z: this represents actually the so-called “thinning out” of these waves
due to the induced curvature.

The Feynman propagator. The full propagator is of the form

G
F

qa = G
(1)
qa − 2iG (3.23)

that is

G
F

qa =
1

(2π)2

[√
∆

tqa

(ξ + i0) + bqa
ln(ξ + i0) +wqa

]

. (3.24)

Advanced or retarded Green functions. We set

G
±

qa =

∫ √
t G

±

qr′ t
r′

a δ
(4)d4x′. (3.25)

The quantities G±

qa correspond to advanced and retarded portions
of the Green functions Gqa, whose components depend on two distinct
points x and z: they define a bi-vector.

If we consider an arbitrary space-like hypersurface S(x) containing
x, we regard “actions” as retarded when the source za lies to the past
of S, and advanced when the source za lies to the future of S. The
“symmetric” Green function is then

Gqa =
1

8π

[√
∆ tqa δ ξ − bqaǫ(−ξ)

]

, (3.26)

where the functions G can, just as in the flat-space case, be separated
into advanced and retarded parts

Gqa =
1

2

(

G
−

qa +G
+

qa

)

(3.27)

with

G
−

qa = 2ǫ(S, z)Gqa(x, z) , (3.28)

G
+

qa = 2ǫ(z, S)Gqa(x, z) , (3.29)

ǫ

[

S(x), z
]

= 1− ǫ
[

z, S(x)
]

= 1 ,

when z lies to the past of S, and vanishes when it lies to the future.
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§3.2. Dynamical equations for the electron

§3.2.1. Tensor density of the electromagnetic field

Energy-momentum field global tensor density. On an arbitrary
manifold, the approximated Lagrangian for a particle of mass m0 is

Lm = −m0c
2

∫

√

− gab ża żb δ(4)dτ . (3.30)

The inferred massive tensor density of this particle with respect to
the proper time τ following the geodesic z(τ) is

M qr = m0c

∫ √
t tqa t

r
b ż

a żb δ(4)dτ . (3.31)

For an electron interacting with an electromagnetic field, the Lag-
rangian density becomes

L = −m0c
2

∫

√

− gab ża żb δ(4)dτ +

+ e

∫

Aa ż
a δ(4)dτ − 1

16π

√−g FqrF
qr . (3.32)

The current vector density expressed with the charge density (1.7)
can be determined from the four-velocity ża at the point z, by parallel
displacement along the geodesic extending z to x

jq = e

∫ √
t tqa ż

a δ(4)dτ . (3.33)

The form of this density justifies the form of the second term in
(3.32), which corresponds to the classical electron-field interaction,
eAqj

q. Application of the least action principle to

S =
1

c

∫

Ld4x (3.34)

yields the dynamical equations

m0 z̈
a =

e

c
F a ·

·b żb, (3.35)

√
−g ∂rF

qr =
4π

c
jq = ∂rF

qr. (3.36)

Given the current density jq, the tensor F a ·

·b appearing on the right
hand side of (3.32) is divergent, and this leads to the well-known diffi-
culty that the electron’s proper mass m0 is infinite, which must thereby
be renormalized.
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For reasons which will become clear later, we hereby proceed to
consider the tensor density of the whole system as

ℑab = (ℑab)mass + (ℑab)field + (ℑab)elec . (3.37)

Advanced or retarded potentials. According to Quantum Elec-
trodynamics, the particular solutions of equation (3.5) are the retarded
and/or advanced potentials

A
−

q (x) =
4π

c

∫

G
−

qr (x, x
′) j r′(x′) d4x′, (3.38)

A+

q (x) =
4π

c

∫

G
+

qr (x, x
′) j r′(x′) d4x′. (3.39)

Substituting the expressions of jq in the previous equations, we ob-
tain

A±

q = 4πe

∫ +∞

−∞

G
±

qa ż
adτ =

= ± e

∫ ±∞

τs

[

uqa δ ξ − bqaǫ(−ξ)
]

żadτ , (3.40)

where τS is the value of the proper time at the point of intersection
of the world line of the particle with an arbitrary hypersurface S(x)
containing x.

Defining the advanced and retarded proper time of the particle rel-
ative to the point x, τ±, we obtain the advanced and retarded poten-
tials as

A±

q = ∓ e
[√

∆ tqa ż
a
(

żb∂b ξ
)−1

]

τ=τ±
∓ e

∫ ∞

τ±

bqa ż
adτ . (3.41)

These are the covariant Liénard-Wiechert potentials. For flat space-
time these potentials obviously reduce to the form (1.12).

Retarded and advanced fields. From the potentials defined above,
we define the corresponding proper fields

F±

qr = ∂qA
±

r − ∂rA
±

q . (3.42)

The total field can be expressed in the alternative forms

Fqr = (Fqr)
in + F

−

qr = (Fqr)
out + F+

qr , (3.43)

where in and out mean the incoming field and the outgoing field, re-
spectively.
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Defining the average field

〈Fqr 〉 =
1

2

(

F
−

qr + F+

qr

)

, (3.44)

we write the total field in terms of the average free non-radiative field

Fqr = 〈(Fqr)
free 〉+ 〈Fqr 〉 (3.45)

with
〈(Fqr)

free 〉 = 1

2

[

(Fqr)
in + (Fqr)

out
]

. (3.46)

The field strengths can be explicitly written as

F±

qr = ∓ e
{

(ura∂qξ − uqa∂rξ) ż
a (żb że∂b∂eξ + z̈b∂bξ)(ż

d∂dξ)
−3 −

−
[

∂b(ura∂qξ − uqa∂rξ) ż
a żb + (ura∂qξ − uqa∂rξ) z̈

a
]

(że∂eξ)
−2 +

+ (∂qura − ∂ruqa + bra∂qξ − bqa∂rξ)ż
a(∂bξ ż

b)−1
}

τ=τ±
∓

∓ e

∫ ±∞

τ±

fqra ż
adτ +O(ξ) , (3.47)

where
fqra = (∂qbra − ∂r bqa) . (3.48)

§3.2.2. Global damping

Energy-momentum tensor density. We consider the energy-
momentum tensor density ℑab =(ℑab)mass +(ℑab)field +(ℑab)elec (3.37)
of the system at the point x. Thus (here O vanishes when ξ → 0),

1

c
taq ℑqrdSr =

1

4πc

√
−g

[

taq
(

〈F q ·
·s 〉〈F rs 〉+ 〈(F q ·

·s)
free 〉〈F rs 〉+

+ 〈F q ·
·s 〉〈(F rs)free 〉

)

dSr −
(

1

4
〈Fst 〉〈F st 〉+ 1

2
〈(Fst)

free 〉〈F st 〉
)

×

× tqa dSq

]

+
1

c
taq (ℑqr)field +O (ξ) . (3.49)

Avoiding the mass renormalization. Reverting to the result in-
ferred in the present theory, we integrate (3.49) according to

1

c

∫

4π

taqℑqrdSr =

[

e2

2ǫc2
z̈a − e2

c
żb

∫ +∞

−∞

fa · ·

·be′ ż
e′τ ′dτ ′ −

− e

c
〈(F a ·

·b )
free 〉 żb

]

dτ +
1

c

∫

4π

taq (ℑqr)field dSr +O (ξ) , (3.50)
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where z̈a is a function of the electromagnetic field.

In this equation, we must get rid of the term e2

2ξc2
z̈a which is diver-

gent. This term has the same kinematical structure as the mass term
in (2.58). Therefore, we renormalize the mass as follows

m = m0 + lim
ξ→0

e2

2ξ c2
(3.51)

and (2.58) reads now

mz̈a =
e

c
〈(F a ·

·b )
free 〉 żb + e2

2c
żb

∫ +∞

−∞

fa · ·

·be′ ż
e′dτ ′. (3.52)

By setting

z̈a
e2

2ξ c2
dτ = −1

c

∫

4π

taq (ℑqr)field dSr , (3.53)

we remark that the renormalization is no longer required, which gives
a better physical consistency to the present theory. This particular
circumstance tends to lend support to the existence of free gravitational
fields predicted by the EGR theory.

In the absence of charge, we obtain the well-known inertia law

m0 z̈
a = 0 . (3.54)

As outlined by De Witt and Brehme [3], for purposes of application
to physically set boundary conditions, it is more appropriate to deal
with the “incoming” field (Fab)

in

m0 z̈
a =

e

c
(F a ·

·b )
in żb +

2

3

e2

c3

(

...
z a − ża ż2

c2

)

+

+
e2

c
żb

∫ r

−∞

fa · ·

·be′ ż
e′dτ . (3.55)

On the right hand side, one recognizes the first two terms of the
relativistic equation (1.23), bearing in mind that the derivatives are
covariant here, while keeping the proper mass m0 on the left hand side.

The third term determined by baq of the Green function is the “tail”
due to the space-time curvature and radiation damping occurs even
when (F a ·

·b )
in vanishes.

Concluding remarks

Let us stress some important points about the “tail” term:

• It is spanned by Rab, which are built with the general connection
coefficients (2.2): Γ= { } +(Γ)J as defined by the EGR theory;
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• We thus have implicitly assumed that the elementary solutions
of Hadamard and subsequent relations hold within the suggested
extension of the GR theory.

Upon this assumption, it is clearly shown that, with the introduction
of the related persistent free field, one no longer requires a negative
external mass, thus avoiding an unphysical “pathology” found in the
Riemannian theory.

In the Euclidean approximation, the third term (3.55) vanishes any-
way and the formula (1.23) is recovered.
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2. Landau L.D. et Lifshitz E.M. Théorie des Champs. Traduit du Russe par
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