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Abstract: This is an extended formulation of General Relativity
based on the existence of an additional segment curvature, due to the
non-vanishing covariant derivative of the metric tensor. The resulting
enlarged manifold allows for a permanent “free” field to exist next to
the usual phenomenological energy-momentum tensor. This field may
provide plausible explanation to further unanswered pending issues.
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Notations:

To completely appreciate this article, it is imperative to define some
notations employed.

Indices. Throughout this paper, we adopt the Einstein summation
convention whereby a repeated index implies summation over all val-
ues of this index:

4-tensor or 4-vector: small Latin indices a, b, . . . = 1, 2, 3, 4;

3-tensor or 3-vector: small Greek indices α, β, . . . = 1, 2, 3;

4-volume element: d4x;

3-volume element: d3x.

Signature of space-time metric:

Hyperbolic (+−−−) unless otherwise specified.

Operations:

Scalar function: U(xa);

Ordinary derivative: ∂aU ;

Covariant derivative in GR: ∇a;

Covariant derivative in EGR: Da or ′, (alternatively).

Tensors:

Symmetrization: A(ab) =
1
2
! (Aab +Aba);

Anti-symmetrization: A[ab] =
1
2
! (Aab − Aba);

Kronecker symbol: δab = (+1 if a = b ; 0 if a 6= b);

Levi-Civita tensor: ǫabcd (where ǫ1234 = 0).

Three-dimensional vectorial quantities:

P = Pα .
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Introduction

As early as 1915, Einstein’s General Theory of Relativity (GR) has suc-
cessfully generalised Newton’s original equations wherefrom most of the
cosmological observations have been accurately described (to a certain
extent).

As a possible doorway to further analysis, I would like to present here
a new approach of the concept of gravity by considering a “free” gravity-
like field which is assumed to be present and “localizable” throughout
our Universe. Like the usual gravitational field classically resulting from
the mass, this specific field interacts with matter and this coupling ac-
tually accounts for the known gravitational mass.

In this paper, our basic idea rests upon following observation. In the
framework of classical physics, electrodynamics is described by means
of two tensors:

• A pure electromagnetic field tensor described by Maxwell’s tensor;

• A massive tensor which constitutes the charged particle.

Interaction of both quantities results in a conserved global momen-
tum vector. Proceeding, in perfect analogy with the above, we suggest
that gravitation also be described by two tensors:

• One tensor inherent to a pure field;

• The other tensor generalized only relative to the particle’s mass.

By doing so however, we come across a major difficulty. Classi-
cal electrodynamics takes place in either an Euclidean space or on a
Riemannian manifold. A straightforward gravitational analogy is not
admissible, for whatever be the gravity field, it defines the space-time
structure, which in turn will affect the matter field coupling.

Our line of attack consists of assigning to the macroscopic energy-
momentum tensors a “dominant Riemannian” characteristic which is
embedded in a more global geometry. In the framework of this scheme,
the Riemannian physics would then just appear as a large scale ap-
proximation characterizing the elementary masses and energies, thus
never conflicting with the known results of GR. On the very small scale,
however, the non-Riemannian geometry is no longer negligible and its
properties should be taken into consideration.

To achieve such a construction, we develop an antisymmetric ex-
tended (torsion-free) General Relativity (while keeping the four space-
time dimensions), by ruling out the restrictive metric condition∇gab=0,
thus introducing a new connection built from the non-vanishing covari-
ant derivative of the metric tensor.
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The resulting enlarged manifold displays here an extra curvature
called the segment curvature.

With this preparation, we can derive a generalized Einstein tensor
denoted here the EGR tensor (i.e. the Extended GR tensor), which
implies the existence of the so-called EGR field equations very close to
the classical case.

In the absence of energy (e.g. mass), the EGR field equations how-
ever, do not reduce to the Riemannian source free equations: they ac-
tually always retain a “remnant-like” energy-momentum field tensor,
which can be regarded as a vacuum “background” displaying a non-
vanishing low level Riemannian part and non-Riemannian part due to
the covariant derivative of the metric tensor.

As a conceptual gift, with this new theory, one no longer requires a
“vanishing” (symmetric) gravitational energy-momentum pseudo-tensor
[1] attributed to the mass and whose physical meaning has always re-
mained unclear. In this sense, the EGR “residual” (true) field tensor is
just a continuation of this pseudo-tensor when escaping a massive body.
As well, its deep antisymmetric nature arises naturally from the theory.

It clearly confirms Einstein’s early choice (as well as Dirac), and
thus simply avoids the confusing controversy between the two versions.
Last but not the least, the cosmological constant term gabλ, which is
initially discarded in the text, automatically reappears under the form
of a (small) term gabJ

2 where J2 is the square of a slightly varying
four-vector fundamentally related to the extra segment curvature.

In our opinion, J2, which prevails among other terms on the right
hand side of the EGR field equations, has been “erroneously” approx-
imated to the famous constant λ, thus misleading, since the complete
structure of the EGR equations has been ignored.

Chapter 1. Gravitational Field: The Classical Theory

§1.1. The GR fundamental equations

Typically, the source-free field equations are non-linear equations of
propagation which must contain derivatives of gab up to 2.

So, we consider the action

S =

∫

L
E

√−g d4x , det ‖gab‖ = g , (1.1)

which must be stationary when the metric tensor is varied and where
the Lagrangian LE and its density LE are expressed with the Christoffel
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symbols as in the classical Einsteinian theory (Riemannian geometry)

L
E
=

√−g L
E
=

√−g gab
({

e
ab

} {

d
de

}

+
{

d
ae

} {

e
bd

})

(1.2)

being derived from the contracted curvature tensor (Ricci’s tensor)

Rbc = ∂a
{

a
bc

}

− ∂c
{

a
ba

}

+
{

d
bc

}{

a
da

}

−
{

d
ba

}{

a
dc

}

. (1.3)

Thus one infers the source-free field equations

Gab = Rab −
1

2
gabR = 0 . (1.4)

The Einstein tensor Gab is a symmetric second-rank tensor, which
is a function of only gab and their first and second derivatives. We
have thus ten equations in (1.4) with partial derivatives which are not
mutually independent.

There exists only 6 independent conditions, since the space-time
coordinates can be subjected to an arbitrary transformation allowing
us to choose four out of the ten generalizations of the metric tensor gab.

In order for the four conservation identities resulting from (1.4)

∇aG
a
b = 0 (1.5)

to be satisfied along with the previous conditions, Elie Cartan showed
that the tensor Gab should have the following form

Gab = k

[

Rab −
1

2
gab (R− 2λ)

]

, k = const, (1.6)

where λ is known as the cosmological constant, and it will be discarded
here. When a source (matter) is present, we obtain ten non-linear equa-
tions

Gab = Rab −
1

2
gabR = κ Tab , (1.7)

which show that masses and space-time are not mutually independent.
Also, here

κ = − 8πG

c4
(1.8)

is Einstein’s constant and G is Newton’s constant.
The (massive) energy-momentum tensor here is given by

Tab = ρc2uaub , (1.9)

where ρ is the matter density.
The fundamental equation (1.8) generalizes the Poisson equation,

which is clearly valid in Newtonian physics when the macroscopic ve-
locities are slow compared to the light velocity c.
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§1.2. Energy-momentum pseudo-tensor density

The condition ∇aG
a
b = 0 implies

∇aT
a
b = 0

or
∂aℑa

b = 0 (1.10)

with the tensor density

ℑa
b =

√−g T a
b .

However, inspection shows that

∂aℑa
b =

1

2
ℑcd ∂b gcd

and the condition (1.10) is thus never satisfied in a general coordinate
system.

The classical theory requires that the total four-momentum of mat-
ter and its gravitational field

P a =
1

c

∫

(T ab + tab)
√−g dSb

should be conserved.
We thus have to introduce a tensor density

Tab =
√
−g tab

such that
∂a(ℑa

b + T a
b ) = 0 (1.11)

with the explicit form

T c
d =

1

2κ

[

(∂d Gab) ∂L
E

∂ (∂c Gab)
− δcd LE

]

, (1.12)

where
Gab =

√
−g gab

is the metric tensor density, constructed from the fundamental metric
tensor gab.

The quantities T ab are called pseudo-tensor densities of Landau-
Lifshitz, for they can be transformed away by a suitable choice of the
reference frame. The densities T ab are just formed with the Christoffel
symbols, themselves becoming a generalization of a true tensor only with
respect to linear coordinate transformations. This is why the classical
theory stipulates that the gravitational energy, which is attributed to
masses, is not localizable and therefore cannot be engineered.
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Chapter 2. The Basics of the EGR Theory

§2.1. Extended Riemannian geometry

§2.1.1. Structure of the extended manifold

Consider the generalization R
e · · ·
·acd having the same form as the Riemann

curvature tensor Re · · ·
·acd , but constructed on other connection coefficients

R
e · · ·
·acd = ∂dΓ

e
ac − ∂cΓ

e
ad + Γe

acΓ
k
kd − Γk

adΓ
e
kc . (2.1)

On a manifold M referred to a natural basis, ea, it is known that the
connection coefficients Γc

ab can be decomposed as follows

Γc
ab = {cab}+Kc

ab + (Γc
ab)s , (2.2)

where {cab} are the conventional Christoffel symbols of the second kind,
used in General Relativity, and (see Tonnelat [1, p. 30–32] for detail)

Kc
ab =

1

2
gce
(

T [ae],b + T [be],a + T [ab],e

)

(2.3)

is referred to as the contorsion tensor, which includes the torsion tensor∗

T c
[ba]=

1
2
(Γc

ba−Γc
ab). The quantity

(Γc
ab)s =

1

2
gce
(

Db gae +Da gbe −De gab
)

(2.4)

is the so-called segment connection, which is formed with the covariant
derivatives of the metric tensor

Dc gab = ∂c gab − Γac,b − Γbc,a . (2.5)

This last connection characterizes a particular property of the man-
ifold M, which is related to a specific type of curvature called the “seg-
ment curvature”.

In a dual basis θ defined on M, to any parallel-transported vector
along a closed path can be associated:

• A rotation curvature

Ωa
b = −1

2
R

a · · ·

·bcd θ
c∧ θd; (2.6)

• A torsion

Ωa =
1

2
T a
cd θ

c∧ θd; (2.7)

• A segment curvature

Ω = −1

2
R

a · · ·

·acd θ
c∧ θd. (2.8)

∗Somewhere in the scientific literature, the torsion tensor is used in the other
form T c

[ba]
=Γc

ba
−Γc

ab
that does not matter in the present case.
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§2.1.2. Modified action principle

As we know, the classical General Relativity is constructed from the
Riemannian action S=

∫

L
E

√−g d4x (1.1), which is varied with respect
to gab. The derived source free equations are

Gab = Rab −
1

2
gabR = 0 .

In this case, the geometry is Riemannian, i.e.

T c
[ab] = 0 ,

Dgab = ∇gab = 0 .

At this stage, our way of generalizing the GR theory is legitimized
by the following remarks:

• The symmetry of the Einstein tensor is not sufficiently natural.
Indeed, when derived from the relativistic theory, the canonical
energy-momentum tensor is always antisymmetric, as in the elec-
tromagnetic field with a source

θbc =
1

4
gbcFdeF

de − F ba∂cAa + gbcjaA
a

and, in order to fit in the field equations, this tensor has to after-
wards be symmetrized;

• The condition Dgab 6= 0 is more general than the restrictive Rie-
mannian condition

∇gab = 0 ;

• Moreover, we deem that the torsion tensor T c
ab resorts more to an

artificial mathematical property and does not offer a full physical
and clear meaning. We therefore postulate a torsion-free manifold
with 40 general symmetrical connection coefficients

Γa
bc = {abc}+ (Γa

bc)J , (2.9)

where the latter connection is not necessary (2.4).

The Riemannian manifold should nevertheless be recovered when
Dgab=0. To begin with, we follow here the basic ideas of Einstein:
instead of the potentials gab, we consider 40 connection coefficients (2.9)
as the “field” variables.

In this context, the generalization of the Ricci tensor formed with
Γa
bc is still expressed by

Rbc = ∂aΓ
a
bc − ∂cΓ

a
ba + Γd

bcΓ
a
da − Γd

baΓ
a
dc . (2.10)
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§2.1.3. Eulerian equations

We consider the tensor density

R
ab = R

ab√−g , (2.11)

from which we construct the invariant density

H = R
ab
Rab (2.12)

with

R
ab =

∂H
∂Rab

.

The least action principle is then

δS =

∫

δH d4x = 0 . (2.13)

For a variation δΓa
bc, we obtain

δS =

∫
[(

∂H
∂Γa

bc

)

δΓa
bc +

(

∂H
∂(∂eΓa

bc)

)

δ (∂eΓ
a
bc)

]

d4x = 0 . (2.14)

The variation of H is also expressed by

δ

∫

R
bc
Rbc d

4x =

∫
[

R
bc∂Rbc δΓ

a
de

∂Γa
de

+
R

bc∂Rbc δ(∂kΓ
a
de)

∂ (∂kΓa
de)

]

d4x

and, integrating by parts, we obtain

δ

∫
[

R
bc ∂Rbc

∂Γa
de

− ∂k

(

R
bc ∂Rbc

∂(∂kΓa
de)

)]

δΓa
de +

+

∫

∂k

[

R
bc ∂Rbc δΓ

a
de

∂(∂kΓa
de)

]

d4x = 0 . (2.15)

If the variations δΓa
de are zero on the integration boundary, the last

divergence integral has no contribution.
The condition (2.15) reduces to

δ

∫

R
ab
Rab d

4x =

∫

(

Qbc
a δΓa

bc

)

d4x = 0 (2.16)

with

Qbc
a = R

de ∂Rde

∂Γa
bc

− ∂k

[

R
de ∂Rde

∂ (∂kΓa
bc)

]

. (2.17)

The stationary principle for the symmetric Γa
bc leads to the Eulerian

equations

Q(bc)
a =

1

2

(

Qbc
a +Qcb

a

)

= 0 . (2.18)
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From the expression (2.10), we derive the derivatives

∂Rdk

∂ (∂eΓa
bc)

= δem δbd δ
c
k δ

m
a − δek δ

b
d δ

c
m δma (2.19)

and

∂Rdk

∂Γa
bc

= δna δ
b
dδ

c
kΓ

m
nm + δma δbnδ

c
kΓ

n
dm −

− δna δ
b
dδ

c
mΓm

nk − δma δbnδ
c
kΓ

n
dm . (2.20)

Now substituting these into (2.17) yields

−Qbc
a = ∂aR

bc − δca∂eR
be −R

bcΓm
am − δkaR

dcΓb
dk +

+R
bkΓc

ak +R
kcΓb

ka = (Rbc)′,a − δca (R
be)′,e (2.21)

with
(Rbc)′,a = ∂aR

bc + Γb
eaR

ec + Γc
eaR

eb − Γe
aeR

bc (2.22)

where ′, are the covariant derivatives constructed with the global Γa
bc

defined in (2.9).
The condition (2.18) explicitly yields

(Rbc +R
cb)′,a − δca (R

be)′,e − δba (R
ce)′, e = 0 . (2.23)

§2.2. Connection coefficients

In order to determine the exact form of the connection, we first decom-
pose Rbc into the metric density G bc =

√−g gbc and two parts Ebc+Abc,
where Abc is antisymmetric

R
bc = (G bc + Ebc) +Abc. (2.24)

The two-term quantity in brackets represents the Riemann-Ricci ten-
sor density

Rbc
√−g = Rbc = G bc + Ebc (2.25)

so that when Abc = 0, (2.24) reduces, as it should be, to (2.25).
Consistency of our theory leads to impose the following constraint

(Ebc)′,b = 0 . (2.26)

So forth we set
J b = (Aba)′,a = ∂aAba (2.27)

(due to the antisymmetry of Aab) with

J a =
√−g Ja,
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where the four-vector Ja will play a central role.
We now aim to check whether the condition (G bc)′,c = 0 reinstates a

Riemannian connection whereby the curvature tensor Rab (2.10) would
reduce to the Riemann-Ricci tensor Rab.

By contracting (2.23) on c and a, and taking into account (2.26),
one finds

(G bc)′,a = −5

3
J b. (2.28)

If inserting (2.28) into (2.23), the conditions (2.18) eventually read

(G bc)′,a = −1

3

(

δba J c + δca J b
)

. (2.29)

Dividing by
√−g , we obtain

∂a g
bc + gbc∂a ln

√−g + Γb
ea g

ec + Γc
ea g

be − Γe
ea g

bc =

= −1

3

(

δbaJ
c + δcaJ

b
)

(2.30)

and multiplying through by gbc, having gba g
ca= δcb taken into account

as well as
dg = ggbcdgbc = −ggbc dg

bc,

we infer

Γe
ae = ∂a ln

√−g +
1

3
Ja . (2.31)

Substituting this last relation into (2.30) and multiplying it by gbd gkc
(after noting that dged =−gec gbddg

bc), we eventually find

∂a gbc−Γk
ba gkc−Γk

ca gbk =
1

3
(Jc gab+Jbgac−Ja gbc) =Da gbc . (2.32)

Interchanging the indices a and b, then a and c, we obtain two more
equations of type (2.32), which could be virtually denoted by (2.32)′

and (2.32)′′. From the linear combination (2.32)′ + (2.32)′′ − (2.32), we
eventually get the explicit form of the global connection

Γd
ab =

{

d
ab

}

+ (Γd
ab)J =

{

d
ab

}

+
1

6

(

δda Jb + δdb Ja − 3gabJ
d
)

. (2.33)

Our last equation (2.33) shows that when Ja =0, we have Da gbc =0
and thus

(G ab)′,b = 0 . (2.34)

From (2.31), the condition Ja =0 implies (Γb
ae)J=0, so we see that

in the case, the generalized curvature tensor Rab (2.10) reduces to the
Riemann-Ricci tensor Rab.
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Chapter 3. The EGR Field Equations

§3.1. EGR curvature tensors

§3.1.1. The fourth-rank curvature tensor

From the connection

Γd
ab =

{

d
ab

}

+ (Γd
ab)J =

{

d
ab

}

+
1

6

(

δda Jb + δdb Ja − 3gabJ
d
)

(3.1)

the EGR curvature tensor can be derived

R
a · · ·

·bcd = Ra · · ·

·bcd +∇dΓ
a
bc −∇cΓ

a
bd + Γk

bcΓ
a
kd − Γk

bdΓ
a
kc . (3.2)

Inspection shows that the following relations hold

(R e · · ·
·dab)′, k + (R e · · ·

·dka)′,b + (R e · · ·
·dbk)′,a = 0 , (3.3)

R
e · · ·
·dab + R

e · · ·
·bda + R

e · · ·
·abd = 0 . (3.4)

Let us now contract

gceR
e · · ·
·dab = Rcdab , (3.5)

we then note that, from ∇a(Γ
e
db)J ,

gce∇a

[

(Γe
bk)J δkm δmd

]

= gcd∇a(Γ
e
be)J

and the curvature tensor (3.5) now reads

Rcdab = Rcdab + gce∇b(Γ
e
da)J − 1

2
gce
[

∇a(Γ
e
db)J +∇d(Γ

e
ab)J

]

+

+ gce
[

(Γe
kb)J (Γk

da)J−(Γe
ka)J (Γk

db)J
]

+ gcd
[

∂a(Γ
e
be)J−∂b(Γ

e
ae)J

]

. (3.6)

With the definition (3.1) we have

(Γd
ad)J =

1

3
Ja (3.7)

and

∂a (Γ
d
bd)J − ∂b (Γ

d
ad)J =

1

3
Jab (3.8)

with
Jab = ∂aJb − ∂bJa . (3.9)

§3.1.2. The EGR second-rank tensor

The relation (3.6) eventually leads to the contracted tensor

R
d · · ·

·abd = Rab = Rab +∇d (Γ
d
ab)J −∇b (Γ

d
ad)J +

+ (Γk
ab)J (Γ

d
kd)J − (Γk

ae)J (Γ
e
kb)J , (3.10)
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we then have once more the splitting

Rab = R (ab) + R [ab] (3.11)
with

R (ab) = Rab +∇d (Γ
d
ab)J − 1

2

[

∇b (Γ
d
ad)J +∇a (Γ

d
bd)J

]

+

+ (Γk
ab)J (Γd

kd)J − (Γk
ae)J (Γe

kb)J (3.12)

and

R [ab] =
1

2

[

∂a (Γ
d
bd)J − ∂b (Γ

d
ad)J

]

(3.13)

that is

R (ab) = Rab −
1

2

(

gab∇dJ
d +

1

3
JaJb

)

, (3.14)

R [ab] =
1

6
(∂aJb − ∂bJa) . (3.15)

§3.1.3. The EGR curvature scalar

Applying R = gdaRda, we have

R = R−∇e

[

gda(Γe
da)J

]

−∇e

[

gdc(Γe
dc)J

]

−
− gda

[

(Γe
da)J (Γc

ce)J − (Γk
de)J (Γe

ka)J
]

(3.16)

or

R = R− 1

3

(

∇eJ
e +

1

2
J2

)

. (3.17)

§3.2. The EGR Einstein tensor

Unlike the Riemann curvature tensor, the EGR curvature tensor is no
longer antisymmetric on the indices pair ca

Rcabk + Racbk =
2

3
gcaJbk (3.18)

or

R
ca · ·

· ·bk + R
ac · ·
· ·bk =

2

3
gcaJbk . (3.19)

Lifting the indices d in the equation (3.3) and contracting on d and
k as well as on b and e, we obtain

(R bk · ·

· ·ab)′,k + (R bk · ·

· ·ka)′,b + (R bk · ·

· ·bk)′,a = 0 (3.20)

then we replace R
bk · ·

· ·ab by its value from (3.19). We eventually find

(R bk · ·

· ·bk)′,a + 2(R bk · ·

· ·ab)′,k +
2

3
gbk (Jka)′,b = 0 (3.21)
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that is
(

R
k
a − 1

2
δkaR

)

′, k
= −1

3
(Jk

a )′,k (3.22)

which is just the generalized conservation law for the EGR tensor Gda=
=(Gda)EGR (here we substitute d= k)

Gda = R(da) −
1

2

(

gdaR − 2

3
Jda

)

. (3.23)

The latter will be called here the EGR Einstein Tensor. It obviously
reduces to the “Riemannian” Einstein tensor

Gda = Rda −
1

2
gdaR = 0

in the framework of the classical GR field equations.
The equations (3.23) are a transcription of the tensor density EGR

field equations
R

da + Bda = 0 , (3.24)

whose conservation law is
(

R
b
a + Bb

a

)

′, b
= 0 .

In the strong (ideal) Riemannian regime J a = 0, thus

(Rb
a)′,b = ∇bRb

a = 0 ,

∂bRb
a − {cba}Rb

c = 0 ,

or

∂bRb
a −

1

2
Rcb∂a gcb = 0

eventually

∇b

(

Rb
a −

1

2
δbaR

)

= 0 ,

which is just the conserved Einstein tensor Gab as inferred from the
Bianchi identities in the classical GR

Gab = Rab −
1

2
gabR .

It is now easy to derive the expression of the tensor Bda correspond-
ing to Bda

Bda = −1

2

(

3

2
gda∇eJ

e +
1

3
JdJa −

1

6
gdaJ

2 +
2

3
Jda

)

. (3.25)

By doing so, we note that 1
6
gdaJ

2 is only the term in the bracket

which carries J2, and which prevails over the others as a candidate to
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generalize gdaλ (the cosmological term). The term 1
6
gdaJ

2 is reminis-
cent of the classical gdaλ, where λ was long regarded as a mere constant
in the usual Riemannian theories.

§3.3. The persistent field

§3.3.1. The EGR field equations

In the framework of the EGR theory, our universe is completely de-
scribed by Gab =(Gab)EGR.

In the classical GR, the source-free field equations are

Gab = 0 , (3.26)

but according to our basic postulate, the latter “Riemannian” equation
is merely a particular case in the framework of the global EGR geometry.
Therefore, in the absence of the macroscopic energy term, there should
always remain a faint energy tensor described by the extra curvature.

The classical vacuum equations (3.26) should be replaced by the
following EGR field equations

R
ab + Bab = κ (ℑab)field . (3.27)

When matter or ponderomotive energy is present, we simply write

ℑab = (ℑab)Riem + (ℑab)field , (3.28)

which has a certain analogy with the “Riemannian” electrodynamics,
where there exists a massive tensor for a conductor, and an interacting
electromagnetic energy-momentum tensor.

In the immediate neighbourhood of a mass, the Riemannian geom-
etry represented by (ℑab)Riem becomes increasingly dominant inside the
global one, and (ℑab)field coincides with the gravitational pseudo-tensor
density classically attributed to the mass.

§3.3.2. The persistent energy-momentum tensor

By considering the tensor density Tab =
√−g tab (see Page 154),

T c
d =

1

2κ

[

(∂dG ab)
∂L

E

∂ (∂cG ab)
− δcdLE

]

(3.29)

one can express the tensor density (ℑab)field, which can be determined
through the usual canonical equations

(ℑa ·

·b)field =
1

2κ

[

Hδab − (∂bΓ
e
dk)

∂H
∂ (∂aΓe

dk)

]

. (3.30)
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It has a tensor counterpart (Tab)field which is written as

√−g (T ab)field = (ℑab)field . (3.31)

As expected from Bab, we can easily check that this tensor is anti-
symmetric on the indices a and b.

In accordance with (3.28), we now suggest that the massive tensor
density (ℑab)Riem still be given by

(Tab)Riem = ρ uaub , (3.32)

where ρ is the density of the (neutral) massive fluid.
The conservation law (1.10) then corresponds to

(ℑ·b
a ·
)′,b =

[

(ℑ·b
a ·
)
field

′,b + (ℑ·b
a ·
)
Riem

′,b

]

= 0 , (3.33)

(ℑ·b
a ·
)
mass

′,b = ∂b(ℑ·b
a ·
)
Riem

−
[

{cba}(ℑ·b
c ·)Riem

+(Γc
ba)J (ℑ·b

c ·)Riem

]

=

= ρ
√−g

Dua

dτ
.

In the Riemannian regime, J a = 0 (which is an ideal case) and we
should have

∇b ℑ·b
a ·

= 0 , ρ
√−g

∇ua

dτ
= ∂b (ℑ·b

a ·
)
Riem

− {cba} (ℑ·b
c ·)Riem

that is

ρ
∇ua

dτ
=

1√−g
∂b (ℑ·b

a ·
)
Riem

− {cba} (T b
c )Riem

= ∇bT
b
a

in accordance with the classical result inferred from the definition of the
massive tensor

T ab = ρuaub.

Strictly speaking, the four-velocity ua should be slightly modified
since the Universe is characterized here by two forms:

• The quadratic form

ds2 = gab dx
adxb;

• The linear form
dJ = f(Jb)dx

b.

A reasonable choice for (ua)
EGR

can be

(ua)
EGR

=
dxa

√
ds2 + dJ

. (3.34)
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§3.3.3. Interaction with matter

Reinstating the light velocity c, we now consider the immediate vicinity
of a massive body. We write the total energy-momentum four-vector
(attributed to field and mass)

P a =
1

c

∫

[

(T ab)field + (T ab)Riem

]√−g dSb (3.35)

across any given hypersurface.
In the framework of the immediate neighbourhood of the mass, the

field tensor (Tab)field is replaced by the tensor tab which coincides with
the classical gravitational energy-momentum pseudo-tensor.

In this case, the total energy-momentum four-vector reduces to the
“Riemannian” result

P a =
1

c

∫

[

tab + (T ab)Riem

]√−g dSb . (3.36)

Consider then the “contact” situation for which (Tab)Riem, when in-
tegrated over the volume ϑ of the mass, gives the contribution

m0c
2 =

∫

[

(T 1
1)Riem

+(T 2
2)Riem

+(T 3
3)Riem

−(T 4
4)Riem

]√−g dϑ (3.37)

into the total energy-momentum four-vector (3.35).
On the other hand, the “Riemannian” static field equations result

in the follows

R4
4 =

8πG

c4

[

(T 4
4)Riem

− 1

2
(T )

Riem

]

=

=
4πG

c4

[

(T 4
4)Riem

− (T 1
1)Riem

− (T 2
2)Riem

− (T 3
3)Riem

]

, (3.38)

where we have first established that classically
∫

R4
4

√−g dϑ = − 4πG
P 4

c3
, P 4 = m0c , (3.39)

P a =
1

c

∫

[

(ℑab)field + (ℑab)Riem

]

dSb (3.40)

across any given hypersurface.
At a large distance from a source, (ℑab)Riem → 0, thus

P a ≈ 1

c

∫

(ℑab)field dSb . (3.41)
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Chapter 4. Concluding Remarks

As a temporary conclusion, we would like to consider the foregoing the-
oretical elements in the light of the long discussed “MOND” paradigm
and its developments. Let us first recall some relevant history.

§4.1. The MOND formulation

Newtonian gravitational theory, when applied to describe acceleration
of stars and gas as estimated from Doppler velocities, does not fit with
the Newtonian field generated by the visible matter. This is known as
the “missing mass” problem, which has led astrophysicists to invoke
some sort of dark energy or exotic matter while it has actually never
been detected.

In the meanwhile, some scientists have turned to a possible new law
of gravity which would be more appropriate in predicting the observed
anomalies. In the beginning of the 1980’s, the astronomer Mordehai
Milgrom [2] restated Newton’s second law with the following scheme

µ

(

a

a0

)

a = − ∂αΦN (4.1)

where a is the generic acceleration, ΦN is the Newtonian potential of the
visible matter, a=aα is the three-dimensional acceleration vector, and
∂α=

∂

∂xα is the three-dimensional spatial differential operator. Milgrom
termed the acceleration scale a0, where the function µ satisfies

µ
a

a0
= 1 for a ≫ a0 , and µ

a

a0
=

a

a0
for a ≪ a0 (4.2)

with an estimate numerical value of

a0 ≈ 10−8 cm/s
2
.

In the limit of low accelerations, Newton’s second law should be
quadratic and approach the following form (in the direction of the radial
coordinate r) in the presence of a gravitational potential

a

a0
ar = ∂rΦ .

For a point mass m the attractive potential at r is

V 4 = Gma0 ,

which describes a flat rotation curve.
This is the MOND paradigm, the “modified Newtonian dynamics”,

which so far predicts most of the observed anomalies.
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§4.2. Non-relativistic reformulation of MOND

A first Lagrangian (Riemannian) density was found to be

L =
a20

8πG′
f

(

(∂αΦ)
2

a20

)

− ρΦ , (4.3)

where (∂αΦ)
2= ∂αΦ ∂αΦ. This leads to the following gravitational field

equation

∂α

[

µ

(

√

(∂µΦ)2

a0

)

∂αΦ

]

= 4πG′ρ , (4.4)

where

µ (
√
y) =

df(y)

dy
,

assuming

f(y) =

{

y for y ≫ 1

2
3
y

2/3 for y ≪ 1

and G
′ is a constant which reduces to Newton’s gravitational constant

G in the classical regime ΦN. Inspection shows that, when the usual
form of the generic acceleration is applied

a = − ∂αΦ , (4.5)

the solution corresponds to (4.1).
The Lagrangian density (4.3) is “aquadratic”, therefore the theory

is known as the AQUAL theory.

§4.3. A theory of Te-Ve-S

First Relativistic AQUAL. It has been suggested to consider a
physical metric (gab)

′ conformal to a “primitive” Einstein metric gab
according to

(gab)
′ = e2Ψgab , (4.6)

where Ψ is a real scalar field.
The action of a particle of mass m0 is expressed as

S = −m0

∫

eΨ
√

− gab dxadxb . (4.7)

For slow motion in a quasi-static situation with nearly flat metric
and in a weak field Ψ,

eΨ
√

− gab dxadxb ≈
(

1 + ΦN +Ψ− v2

2

)

dt ,
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where

ΦN = −g44 + 1

2
(4.8)

is the known tensor form of the Newtonian potential induced by the
mass density ρ as inferred from the linearized Einstein equations, while
v is the velocity with respect to the Minkowski metric ηab = gab−hab .

The particle’s Lagrangian is thus

m0

(

v2

2
− ΦN −Ψ

)

, (4.9)

which leads to the equation of motion

a ≈ − ∂α (ΦN +Ψ) . (4.10)

Whenever
|∂αΨ| ≫ |∂αΦ| ,

so (4.10) reduces to (4.1). Thus we obtain the MOND-like dynamics,
and also

|∂αΨ| ≪ a0 .

In the regime where |∂αΨ|≫ a0, µ≈ 1, f(y)≈ y, the quantity Ψ
reduces to ΦN.

To keep the particles’ acceleration Newtonian, the measurable New-
tonian gravitational constant G is twice to the bare constant G′ intro-
duced in (4.4).

However Bekenstein [3] pointed out the setbacks of the relativistic
AQUAL: it turns out that the Ψ-waves can propagate faster than light
due to the conformal transformation of the physical null cone, and there-
fore the contribution of Ψ should be kept to a minimum. The last
assumption is quite contradicting to the actual galaxies and clusters,
which are observed to deflect light stronger than the visible mass.

Disformal related metrics

a) Field ∇aΨ. The light deflection problem can be cured by discarding
the relation (4.6). It is then suggested to replace the conformal relation
by a “disformal” generalized

(gab)
′ = e−2Ψ

(

A gab + BL2∇aΨ∇bΨ
)

(4.11)

with A and B functions of the invariant gab∇aΨ∇bΨ, and L= 1
a0
. This

allows to deflect light via the term ∇aΨ∇bΨ of the physical metric.
Here the causality is fully maintained, but it yields smaller light

deflection instead of enhancing it.
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b) Field Ua. In February 2008, Jacob D. Bekenstein [3] suggested a pos-
sible relativistic generalization of the MOND paradigm. This is known
as the Tensor-Vector-Scalar content theory (in short, Te-Ve-S [3]), which
introduces, next to the metric tensor gab, a timelike four-vector field Ua

and a scalar field φ. This vector is normalized so that

gab UaUb = −1 . (4.12)

The physical (real) metric here is obtained by stretching the Einstein
metric in the space-time directions orthogonal to Ua = gabUb, by a factor
e−2φ, while shrinking it by the same factor in the direction parallel to
Ua according to

(gab)
′ = e−2φ (gab + UaUb)− e2φUaUb . (4.13)

When a specific matter content is present, with a density ρ, the
physical velocity (ua)

′ of the matter, normalised with respect to (gab)
′,

is taken to be collinear with Ua

(ua)
′ = eφ Ua ,

from which it follows that

(gab)
′ + (ua)

′(ub)
′ = e−2φ (gab + UaUb) . (4.14)

With these elements, Bekenstein’s MOND relativistic theory success-
fully provides a suitable explanation for mass discrepancy (hypothetical
dark matter), and also for several cosmological anomalies without con-
flicting with GR.

§4.4. Matching the relativistic MOND formulation

Let us consider again the contracted EGR tensors

R(ab) = Rab −
1

2

(

gab∇dJ
d +

1

3
JaJb

)

, (4.15)

R [ab] =
1

6
(∂aJb − ∂bJa) , (4.16)

where the time components reduce to

R(44) = R44 −
1

2

(

g44∇dJ
d +

1

3
J4J4

)

, (4.17)

R [44] = 0 , (4.18)

(we note that although, obviously, R [44] =0 and J4 6=0).
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For low velocities and weak fields, the quasi-Euclidean approxima-
tion holds and ∇dJ

d is negligible with respect to 1
3
J4J4

R(44) = R44 −
1

2

(

1

3
J4J4

)

, (4.19)

whereas in the classical Newtonian theory

R44 =
1

c2
∂2ΦN

∂xα∂xα
.

Upon the linear approximation, the quantity

B44 = −1

6
J4J4 (4.20)

can be identified with the Laplacian of the scalar field Ψ, i.e. with
the quantity −∆Ψ, and we find back the conclusions inferred from the
conclusions of the AQUAL model, without recurring to the conformal
metric,

a ≈ − ∂α (ΦN +Ψ) . (4.21)

Causality is therefore respected since no hypothesis is formulated on
the light cone structure. As a result, we see that there is no need to
introduce the specific (real) metric

(gab)
′

= e−2φ (gab + UaUb)− e2φ UaUb . (4.22)

This purely theoretical approach does not take into account the order
of magnitude of the extra curvature which describes the residual field.

Because of this, it may not fit in the relativistic MOND formulation.
However we just want to focus our attention onto the fact that the new
outlook made possible here by the EGR theory.

Indeed, as we will see in the forthcoming papers, the existence of a
persistent field, which is viable through only the EGR theory, provides
a sound consistency in other known theories.
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