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Abstract: In this paper written in 1954 Alexei Petrov describes his
famous classification of spaces according to the algebraical structure
of the curvature tensor, that determines the classes of the gravita-
tional fields permitted therein. Now this classification of spaces (and,
respectively, of the gravitational fields) is known as Petrov’s classi-

fication. This paper was originally published, in Russian, in Scien-
tific Transactions of Kazan State University: Petrov A. Z. Klassifikaz-
ija prostranstv, opredelajuschikh polja tjagotenia. Uchenye Zapiski

Kazanskogo Gosudarstvennogo Universiteta, 1954, vol. 114, book 8,
pages 55–69. Translated from Russian in 2008 by Vladimir Yershov,
England–Pulkovo.

In this paper, the detailed proof of results obtained and published by
the author earlier in 1951 [1]. Namely, it is shown that by examining
the algebraic structure of the curvature tensor V4 one can establish a
classification of the gravitational fields defined by this tensor and given
in the form

ds2 = gij dx
idxj , (1)

with the fundamental tensor satisfying the field equations

Rij = κ gij (2)

(we shall refer to the corresponding manifolds as T4).

§1. Bivector space. Let us consider a point P of the manifold T4,
and associate it with a local center-affine geometry E4. In this E4 let us
select those tensors that satisfy the following conditions: 1) the number
of both covariant and contravariant indices must be even; and 2) the co-
variant and contravariant indices can be grouped in separate antisym-
metric pairs. We shall regard each of these pairs as a single collective
index, denoting it with a Greek letter in order to distinguish it from
the indices corresponding to T4 and E4, for which we shall continue
using Latin letters. Thus, according to the number of possible val-

ues for these collective indices, we shall get an N = n(n−1)

2
- dimensional

manifold (6 dimensions for n=4), the tensors E4 with these properties
defining on this manifold tensors with one-half rank.
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One can say that each point of T4 is assigned to a local 6-dimensional
centre-affine geometry with the group

ηα
′

= Aα′

α ηα, ηα = Aα
α′ ηα

′

|Aα′

α | 6= 0 , Aα
βA

β
γ = δαγ



 . (3)

Indeed, by ordering the collective indices (while selecting a single
pair from the two possible, ij and ji), we shall get six possible collective
indices. Let us take, for example, the following indexing:

1− 14, 2− 24, 3− 34, 4− 23, 5− 31, 6− 12.

Let us now consider the transformation of the components T ij of,
generally speaking, a nonsimple bivector

T i′j′ = A
i′j′

ij T ij ,

assuming

Aα′

α = 2A
[i′j′]
ij , where Ai′

i =

(
∂xi

′

∂xi

)

P

.

In terms of collective indices, this gives

Tα′

= Aα′

α Tα;

i.e., the set of bivectors Tn determines a set of contravariant vectors in
EN (in this case the dimensionality does not matter), assuming that the
relations (3) are satisfied. The validity of these relations can be checked
directly by passing to the Latin indices.

Let us call the manifold obtained a bivector space. Of a special
interest for our further consideration will be the curvature tensor T4. In
the bivector space this tensor corresponds to a symmetric tensor of the
second rank

Rijkl −→ Rαβ = Rβα .

In any local E6 one can define a metric by using for this purpose
any tensor in T4 with the properties

Mklij =Mjikl = −Mijkl = −Mijlk ,

given that the corresponding second-rank tensor in E6 is nonsingular.
Let the tensor

gikjl = gijgkl − gilgkj −→ gαβ = gβα (4)
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be such a fundamental tensor in E6. It is plain to see that gαβ gives a
nondegenerate metrization because |gij | 6= 0, and

|gαβ | = p |gij |
2n, p 6= 0 .

For a definite gij the tensor gαβ will be definite; and for an indefi-
nite gij the tensor gαβ will also, in general, be indefinite. Let us note,
that here we shall consider only those fields of gravity that correspond
to a real distribution of matter in space, which would require [2] the
fundamental tensor gij be reducible to the form

(gij) =




−1
−1

−1
1


 (5)

in the real coordinate system in any given point of T4, that is, we have
arrived at the so-called Minkowski space. Then it follows from (4) that
for the frame corresponding to the matrix (5) the fundamental tensor
R6 will be of the following form:

(gαβ) =




−1
−1

−1
1

1
1



, |gαβ | = −1, (6)

i.e., the tensor gαβ is, in fact, indefinite.

§2. Classification of T4. A series of the most interesting problems
arising in the study of the Riemannian manifolds is related to the cur-
vature tensor Vn. As is known, this tensor is used for introducing the
notion of curvature of Vn at a given point along a given two-dimensional
direction or, which is the same, of the Gaussian curvature of a two-
dimensional geodesic surface at a given point:

K =
RijklV

ijV kl

gpqrsV pqV rs
; (7)

where gpqrs has the form (4), and the two-dimensional direction, which
is defined by the vectors V i

1
and V

2

i, is characterized by the simple bivec-

tor V ij = V iV j

[1 2]
. Let us introduce the notion of generalized curvature
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of Vn, which could be obtained from (7) by dropping the requirement
of simplicity of the bivector V ij . At some point of Vn this generalized
invariant K will be a homogeneous zero-degree function of the com-
ponents of the (generally, not simple) bivector V ij . And, of course,
this invariant will be meaningful in the bivector space, where it can be
written as

K =
Rαβ V

αV β

gαβ V αV β
. (8)

Let us find the critical values of K that will be equivalent to find-
ing those vectors V α in RN , for which K takes critical values. Let
us call these critical values of K stationary curvatures of Vn, and the
corresponding bivectors V α — the stationary directions in Vn. Thus,
our task consists in finding the unconditionally stationary vectors V α

in the bivector space using the necessary and sufficient conditions for
stationarity:

∂K

∂V α
= 0 . (9)

We have to take into account that for an indefinite gij the tensor gαβ
is also indefinite and, hence, it is possible to have isotropic stationary
directions

gαβ V
αV β = 0 . (10)

Let us first exclude this case, returning to it below.
If (10) does not hold then the conditions (9) result in

(Rαβ −Kgαβ)V
β = 0 , (11)

i.e., the stationary directions of Vn will be the principal axes of the
tensor Rαβ in the bivector space, while the stationary curvatures of Vn
will be the characteristic values of the secular equation

|Rαβ −Kgαβ | = 0 . (12)

Let (10) holds now for the stationary V α. Since we are interested
only in the K satisfying the conditions (9), this K is a continuous func-
tion of V α and, hence, it is necessary that the condition

Rαβ V
αV β = 0

were satisfied. Then one can calculate the value of K for the stationary
isotropic direction of V α:

K (V α) = lim
dV α

→0
K (V α + dV α) ,
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assuming the continuity of K as a function of V α. If, for a given V α,
we denote

ϕ = gαβ V
αV β , ψ = Rαβ V

αV β , (13)

then for a stationary isotropic V α

K(V α) = lim
dV α

→0

ψ (V α+ dV α)−ψ (V α)

ϕ(V α+ dV α)−ϕ(V α)
= lim

Σσ
∂

∂V σ
ψdV σ + . . .

Σσ
∂

∂V σ
ϕdV σ + . . .

.

As this limit cannot depend on the ways of changing dV α, then

K(V α) =
∂

∂V σ
ψ

∂

∂V σ
ϕ

=
Rσβ V

β

gσβ V β
,

so that again we obtain (11).
The determination of stationary curvatures and directions in RN

leads to the study of the pair of the quadratic forms (13). Therefore,
the reduction of this pair to canonical form in real space results in a
classification for the curvature tensor of Vn at a given point of Vn, as well
as in a neighboring plane containing this point, where the characteristic
of the K-matrix

‖Rαβ −Kgαβ ‖ (14)

remains constant. For each type of the characteristic (14) there is a
corresponding field of gravity of a specific type. It is this that determines
the sought classification of T4.

Using real transformations, one can always reduce the matrix ‖gαβ‖
to the form (6), and it remains to simplify the matrix ‖Rαβ‖ by using
real orthogonal transformations.

Theorem 1. The matrix ‖Rαβ‖ will be symmetrically-double for the
orthogonal frame (5).

For the basic (5) the field equations will take the form
∑

k

ekRikjk = κgij , ek = ±1 ,

that is, for i = j ∑

k

ekRikik = κ ei ,

and for i 6= j

ekRikjk + elRiljl = 0 (i, j, k, l 6=) .

Writing these relations with the use of collective indices of the bivec-
tor space and taking into account the indexing introduced in § 1, we shall
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get the following expression for our matrix:

‖Rαβ ‖ =

∥∥∥∥
M N

N −M

∥∥∥∥

M =

∥∥∥∥∥∥

m11 m12 m13

m21 m22 m23

m31 m32 m33

∥∥∥∥∥∥
, mαβ = mβα

N =

∥∥∥∥∥∥

n11 n12 n13

n21 n22 n23

n31 n32 n33

∥∥∥∥∥∥
, nαβ = nβα

(α, β = 1, 2, 3)





, (15)

where
∑3

i=1mii =κ and
∑3

i=1 nii =0, due to the Ricci identity, which
proves the theorem. Let us note that similar matrices were obtained by
V. F.Kagan [3], when studying the group of Lorentz transformations,
although he used a condition of orthogonality of these matrices. Under
the same assumption of orthogonality, similar matrices were also studied
by Ya. S.Dubnov [4] and A.M. Lopshitz [5]. The fact established by
the previous theorem takes place for any orthogonal frame and, hence,
taking into account that the orthogonal frame has 6 degrees of freedom
for n=4, one can expect the possibility of further simplification of the
matrix by choosing 6 appropriate rotations.

First let us prove a theorem that would essentially narrow down
the number of possible (at first sight) types of the characteristic of the
matrix (14).

Theorem 2. The characteristic of the matrix (14) always consists of
two identical parts.

Let us reduce the matrix (14) to a simpler form by using the so-
called elementary transformations, which, as is known, do not change
the elementary divisors of a matrix and, therefore, its characteristic.
Let us represent this matrix in the following way:

∥∥∥∥
mαβ +Kδαβ nαβ

nαβ −mαβ −Kδαβ

∥∥∥∥ ,

where δαβ is the Kronecker delta. By multiplying the last column by i
and adding it to the corresponding first column we shall get the equiv-
alent matrix

∥∥∥∥
mαβ + inαβ +Kδαβ nαβ

− i(mαβ + inαβ +Kδαβ) −mαβ −Kδαβ

∥∥∥∥ .
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By multiplying the first row of the previous matrix by i and adding
it to the last row we shall convert the matrix to the form

∥∥∥∥
mαβ + inαβ +Kδαβ nαβ

0 −mαβ + inαβ −Kδαβ

∥∥∥∥ .

Finally, by multiplying the first column by i

2
and adding it to the

corresponding last column and making the same operation with the last
row, we shall obtain the matrix
∥∥∥∥
mαβ + inαβ+Kδαβ 0

0 mαβ−inαβ+Kδαβ

∥∥∥∥≡
∥∥∥∥
P (K) 0

0 P (K)

∥∥∥∥ , (16)

which is equivalent to the K-matrix (14). The task has been reduced to

the studying of two three-dimensional matrices P (K) and P (K), whose
corresponding elements are complex-conjugate. It follows then that the
elementary divisors of these two matrices are also complex-conjugate
and, hence, their characteristics have the same form. Therefore, the
characteristic of ourK-matrix consists of two parts repeating each other,
so that the theorem holds.

Let us note that the principal directions and invariant bundles of
the K-matrix should also be pairwisely complex-conjugate.

Now we can accomplish the classification of the fields of gravity. This
classification can be expressed through the following theorem.

Theorem 3. There exist three and only three types of the fields of
gravity.

The three-dimensional matrix P (K) can have only one of three pos-
sible types of characteristic: [ 1 1 1 ], [ 2 1 ], [ 3 ], if we neglect the cases
when some of the elementary divisors have the same basis and, thus,
some of the numbers in the square brackets should be enclosed in paren-
theses, e.g., [(1 1) 1 ], [(2 1)], etc.

The characteristic of P (K) will have the same form. Then the char-
acteristics of the K-matrix will be written as following:

1) [ 11, 11, 11 ]; 2) [ 22, 11 ]; 3) [ 3 3 ],

where the overlined numbers correspond to the power index of the el-
ementary divisor with the basis being complex-conjugate to the basis
whose power index is expressed by the previous number.

Each of these types of the gravity fields has to be considered sepa-
rately; and of a prime importance here is to get the canonical forms of
the matrix ‖Rαβ ‖ for each of these types.
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§3. The canonical form of the matrix ‖Rαβ ‖. Let us consider

the first type with the characteristic [ 1 1, 11, 11 ]. As in this case the
characteristic is of simple type, the tensor Rαβ has 6 non-isotropic,
pairwisely orthogonal principal directions [6]. One can show that at
a given point of T4 these directions of the bivector space will give the
bivectors of specific structure.

Let us denote the vector components of the real orthogonal frame at
a point of T4 by

k

ξi (k, i=1, . . . , 4), denoting for brevity by ξijkl the simple

bivectors
[k l]
ξiξj (k 6= l) that determine the two-dimensional plane corre-

sponding to the vectors of the frame. In the bivector space, these simple
bivectors define 6 non-isotropic, mutually independent and orthogonal
coordinate vectors

σ

ξα = δασ , so that any vector in R6 (in particular, the

vectors of the principal directions in Rαβ) can be represented in terms
of these vectors.

Let us show that we can take the vectors

Wα = λ(
1

ξα ± i
4

ξα) + µ(
2

ξα ± i
5

ξα) + ν (
3

ξα ± i
6

ξα) (17)

as the vectors of principal directions, which are uniquely defined only
in the case when the roots of the secular equation (12) are all distinct.

Indeed, the condition of Wα to define the principal direction of the
tensor Rαβ is written as

(Rαβ −Kgαβ)W
β = 0 . (18)

But due to the symmetric twoness of the K-matrix this system of
six equations can be reduced to three equations

(ms1 ± ins1 + k)λ+ (ms2 ± ins2)µ+(ms3 ± ins3)ν = 0 , s = 1, 2, 3 .

For λ, µ, ν to be the non-zero solutions of this system it is necessary
and sufficient that K were the root of one of the equations

|P (K)| = 0 , |P (K)| = 0 , (19)

i.e., a root of the secular equation (12), which proves the theorem.
At a given point of T4 the vector Wα (17) of the manifold R6 corre-

sponds to the bivector of completed rank:

W ij = λ(
14
ξij ± i

23

ξij) + µ(
24

ξij ± i
31

ξij) + ν (
34

ξij ± i
12

ξij) . (20)

One can easily check that, under any (real) orthogonal transforma-

tion,W ij grades into a bivector of the same type, with λ, µ, ν −→
∗

λ,
∗

µ,
∗

ν,
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so that the norm of the bivector remains invariant:

λ2 + µ2 + ν2 =
∗

λ2 +
∗

µ2 +
∗

ν2.

Let the roots of (12) K (s = 1, 2, 3) correspond to the vectors of the
principal direction W

s

α; then, according to the above reasoning, the

roots K
s+3

should correspond to W
s

α, provided the appropriate indexing

of the roots.
The root K

1
corresponds to the bivector

W
1

pq = λ
1

(
14

ξpq + i
23

ξpq) +
1

µ(
24

ξpq + i
31

ξpq) + ν
1

(
34

ξpq + i
12

ξpq) ,

and the root K
4
corresponds to the bivector

W
4

pq = λ
1

(
14

ξpq − i
23

ξpq) +
1

µ(
24

ξpq − i
31

ξpq) + ν
1

(
34

ξpq − i
12

ξpq) .

Let us represent the bivector W pq as a sum of two real bivectors

V
1

pq + i
∗

V
1

pq. Then

W
4

pq = V
1

pq − i
∗

V
1

pq.

Let
λ = a

1
+ ib

1
, µ = a

2
+ ib

2
, ν = a

3
+ ib

3
,

where a
s
, b

s
are real numbers (s = 1, 2, 3); hence

V
1

pq = a
1 14

ξpq + a
2 24

ξpq + a
3 34

ξpq − b
1 23

ξpq − b
2 31

ξpq − b
3 12

ξpq,

∗

V
1

pq = b
1 14

ξpq + b
2 24

ξpq + b
3 34

ξpq − a
1 23

ξpq − a
2 31

ξpq − a
3 12

ξpq.

Since W
1

α is not an isotropic vector of R6, then it can always be

regarded as a unit vector

gαβW
1

αW
1

β = 1 ,

which leads us to the conclusion that

3∑

s=1

a
s
b
s
= 0 , (21)

3∑

s=1

b
s

2 − a
s

2 > 0 . (22)

Now we can assert the following.
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1. The real bivectors V
1

pq and
∗

V
1

pq are single-foliated. Indeed, by

writing down the simplicity condition we shall arrive at (21).

2. They are 0-parallel. They cannot be be 2
2
-parallel, which would

be possible only when the coefficients were proportional at equal

ij

ξpq; then they would have to be equal to zero. For example,

a
1

b
1

= −
b
1

a
1

, a
1

2 + b
1

2 = 0 .

They cannot be 1
2
-parallel either, as in this case W

1

α would be a

single-foliated complex bivector; but then by writing the simplicity
condition we would arrive at a contradiction with (21) and (22).
Therefore, we are left only with the above possibility.

3. These bivectors are 2
2
-perpendicular. For this to be true, it is

necessary and sufficient to satisfy the equalities

V
1
is

∗

V
1

sj = 0

for any i, j. It is plain to see that these equalities are reduced to
(21), so that they are, indeed, satisfied.

Let us consider a simple bivector V
1

pq. Its norm, according to (22), is

gαβV
1

αV
1

β =
∑

b
s

2 − a
s

2 > 0 .

In the plain of this real bivector, one can always chose two real, or-
thogonal and non-isotropic vectors ηp, νp. Then the norm of our bivector
can also be expressed in the form

2ηpη
p νq ν

q ,

and, hence, these two vectors are both either space-like or time-like.
Their norms cannot be > 0, because if we took these two real orthogonal
vectors as coordinate vectors, we would arrive at a contradiction with
the law of inertia of quadratic forms. Therefore, these two vectors have
negative norms. Due to this, by re-normalizing them, we can take them

as the vectors
2

∗

ξi,
3

∗

ξi of a new real orthogonal frame.

In a similar way, let us define in the plane
∗

V
1

pq two orthogonal (mu-

tually and with respect to
2

∗

ξi,
3

∗

ξi) vectors, which will be real and non-

isotropic but already having the norms of opposite signs, since

gαβ
∗

ν
1

α∗

ν
1

β < 0 .
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Let us denote these vectors as
1

∗

ξi and
4

∗

ξi. In this coordinate system

∗

W
1

pq =
14

ξpq + i
23

ξpq ,

∗

W
4

pq =
14

ξpq − i
23

ξpq .

Let us note that the frame {
∗

ξ} has been chosen up to a rotation in

the plane {
2

∗

ξ
3

∗

ξ} and a Lorentz rotation in the plane {
1

∗

ξ
4

∗

ξ}. Of course, we

are interested in the bivectors W
σ

pq only up to a scalar factor.

Now, writing the orthogonality condition for
∗

W
1

pq and
∗

W
2

pq, we find,

of course, that the bivector of the second principal direction should have
the form

∗

W
2

pq =
2

∗

µ(
24

∗

ξpq + i
31

∗

ξpq) +
2

∗

ν (
34

∗

ξpq + i
12

∗

ξpq) .

Let us make use of the above indicated arbitrariness in the choice of
the frame and perform the following rotations:

1

ξp = chϕ
1

∗

ξp + shϕ
4

∗

ξp ,

4

ξp = shϕ
1

∗

ξp + chϕ
4

∗

ξp ,

2

ξp = cosψ
2

∗

ξp + sinψ
3

∗

ξp ,

3

ξp = − sinψ
2

∗

ξp + cosψ
3

∗

ξp .

After these transformations W
1

will have the same form; hence W
2

will also be expressed as

W̃
2

pq =
2

µ̃(
24

ξ̃ pq + i
31

ξ̃ pq) +
2

ν̃ (
34

ξ̃ pq + i
12

ξ̃ pq) ,

where

ν̃
2
= sinψ chϕ+ p cosψ chϕ+ q sinψ shϕ+

+ i (cosψ shϕ+ q cosψ chϕ− p sinψ shϕ) ,

p+ iq =

∗

ν
2

2

∗

µ
,

and
2

∗

µ can be considered not being equal to zero, otherwise we would be

satisfied with the values ϕ = ψ = 0. One can find real ϕ and ψ for any
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ν̃
2
= 0. Now the frame is defined uniquely, and, if the orthogonality of

W
1
, W

2
, W

3
is taken into account, the bivectors will have the following

form in this frame (up to a scalar factor):

W
1

pq =
14

ξpq + i
23

ξpq ,

W
2

pq =
24

ξpq + i
31

ξpq ,

W
3

pq =
34

ξpq + i
12

ξpq ,

and, due to the mentioned above complex conjugacy,

W
4

pq =W
1

pq , W
5

pq =W
2

pq , W
6

pq =W
3

pq .

Now, by writing the condition (18) for each of these bivectors and,
taking into account that

α

ξσ = δσα ,

we can easily find

mii = −α
i

, mij = 0 , nii = −
i

β , nij = 0 , (i = 1, 2, 3; i 6= j);

and, therefore, for the first type of T4 we obtain the following canonical
form of the matrix :

(Rαβ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−α
1

−
1

β

− α
2

−
2

β

− α
3

−
3

β

−
1

β α
1

−
2

β α
2

−
3

β α
3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (23)

the real parts of the stationary curvatures being related to each other in
the following way :

3∑

1
s

α = κ , (24)

whereas the imaginary parts obey the condition

3∑

1
s

β = 0 (25)

due to the Ricci identity

R1423 + R1234 +R1342 = 0 .
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Let us now consider a T4 with the characteristic of the second type:
[ 21, 21 ]. As we have already seen (§ 2), one can use the principal di-

rections and and invariant bundles of the matrices P (K) and P (K) for
choosing the principal directions and invariant bundles of the K-matrix.
It follows that it is sufficient to consider, for example, the matrix P (K)
having the characteristic [ 21 ].

With this characteristic, the tensor Pαβ =−mαβ + inαβ of the three-
dimensional space has [6] one non-isotropic principal direction

(Pαβ −K
1
gαβ)W

1

β = 0 (26)

and one isotropic principal direction

(Pαβ −K
2
gαβ)W

2

β = 0 , (27)

the latter (W
2
) being orthogonal toW

1
. Additionally, there exists an iso-

tropic vector W
3

β , orthogonal to W
1

β and not to W
2

β , which, together

with these latter vectors, form an invariant plane {W
2
,W

3
} of the tensor

Pαβ . This is expressed by

(Pαβ −K
2
gαβ)W

3

β = σW
2

α , (28)

where σ is an arbitrary nonzero scalar, whose choice is up to us. This
arbitrariness is the result of the fact that W

2
, W

3
, being isotropic, can

be multiplied by any number without changing their norms.

Any principal direction or bundle of Pαβ will define the correspond-
ing principal directions and bundles of the tensor Rαβ ; all of them being
defined by the bivectors of the type (17).

Let the root K
1
corresponds to a simple elementary divisor (K −K

1
)

of the fields of the K-matrix and to a principal direction defined by the

bivector W
1

α. As this bivector is non-isotropic, we can apply to it all

the above operations used in the previous case for W
1

α. Therefore, we

can find a real frame, with respect to which

W
1

pq =
14

ξpq + i
23

ξpq .

This frame is defined up to a rotation in the plane {
2

ξ
3

ξ } and to

a Lorentz rotation in the plane {
1

ξ
4

ξ }. As the bivectors W
2

pq and W
3

pq
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must be orthogonal to W
1

pq, they have the following form:

W
2

pq =
2

µ(
24

ξpq + i
31

ξpq) +
2

ν (
34

ξpq + i
12

ξpq) ,

W
3

pq =
3

µ(
24

ξpq + i
31

ξpq) +
3

ν (
34

ξpq + i
12

ξpq) .

The isotropy condition for these two bivectors results in

2

µ2 +
2

ν2 = 0 ,
3

µ2 +
3

ν2 = 0 ,

that is,

2

ν = e1 i
2

µ ,
3

ν = e2 i
3

µ ,

where e1 and e2 are equal to ±1. Finally, using the fact that they
cannot be orthogonal, we find that e1=− e2. Therefore, we can put,
for example,

W
2

pq =
24

ξpq + i
31

ξpq + i(
34

ξpq + i
12

ξpq),

W
3

pq = λ{
24

ξpq + i
31

ξpq − i(
34

ξpq + i
12

ξpq)},

where λ is an arbitrary scalar factor 6= 0.
Now we have only to write the conditions similar to (26), (27) and

(28) for the tensor Rαβ , again, as in the previous case, taking into
account that

ν

ξα = δαν . These conditions will have the form

(Rαβ −K
1
gαβ)W

1

β = 0 ,

(Rαβ −K
2
gαβ)W

2

β = 0 ,

(Rαβ −K
2
gαβ)W

3

β = σgαβW
2

β .

The tensor gαβ is defined by the matrix (6). Assuming here α=
=1, 2, . . . , 6, we can readily find that the matrix (Rαβ) (11) will be

(Rαβ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−α
1

0 0 −
1

β 0 0

0 −α
2
+σ 0 0 −

2

β σ

0 0 −α
2
−σ 0 σ −

2

β

−
1

β 0 0 α
1

0 0

0 −
2

β σ 0 α
2
−σ 0

0 σ −
2

β 0 0 α
2
+σ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, σ 6= 0 . (29)
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Here σ can be arbitrary but 6= 0. As in the first case, α
s
and

s
β are

related to each other through

α
1
+ 2α

2
= κ ,

1
β + 2

2
β = 0 . (30)

The frame is determined up to a rotation in the plane {
2
ξ

3
ξ } and

a Lorentz rotation in the plane {
1
ξ

4
ξ }.

We have to consider now the third type with the charcteristic [ 3, 3 ].
For this characteristic [6], the tensor Rαβ will have only one principal

isotropic directionW
1

β and, additionally, two more vectorsW
2

β and W
3

β

with the properties

(Rαβ −K
1
δαβ)W

1

β = 0

(Rαβ −K
1
δαβ)W

2

β = σδαβW
1

β

(Rαβ −K
1
δαβ)W

3

β = τ δαβW
2

β




, (31)

where σ and τ are arbitrary numbers 6= 0. The vector W
2

α is non-

isotropic, whereas W
3

α is isotropic. Besides that, W
1

α is orthogonal to

W
2

α and not orthogonal to W
3

α; while the vector W
2

α being orthogonal

to W
3

α.

SinceW
2

pq is not an isotropic bivector, then, similarly to the previous

two cases, we can write this vector as

W
2

pq =
24

ξpq + i
31

ξpq

by choosing an appropriate frame (with two degrees of freedom). Then,
by taking into account the above conditions for orthogonality and isotro-
py, we shall get the following expressions for the bivectors W

1
and W

2
:

W
1

pq =
14

ξpq + i
23

ξpq + i(
34

ξpq + i
12

ξpq) ,

W
2

pq = λ{
14

ξpq + i
23

ξpq − i(
34

ξpq + i
12

ξpq)} ,

where λ is an arbitrary number 6= 0. The further study is made following
the same scheme as for the previous characteristic types: we should write
the conditions (30) for Rαβ , fixing the facts that W

1

α is the vector of

the principal direction (in the bivector space) and that the vectorsW
1

α,

W
2

α, W
3

α determine the invariant bundle of the tensor Rαβ .
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These conditions are as follows:

(Rαβ −Kgαβ)W
1

β = 0

(Rαβ −Kgαβ)W
2

β = σgαβW
1

β

(Rαβ −Kgαβ)W
3

β = τ gαβW
2

β




, (32)

where σ and τ are non-zero numbers.
Considering that at any given point of T4 the bivector W

σ

pq corre-

sponds to the vector W
nt

pq −→W
σ

α in a local bivector metric space and

taking into account that for the coordinate frame

nt

ξpq −→
σ

ξα = δασ ,

it is not difficult to check that the system of equations (32) is reduced
to the following nine independent equations:

m11 + in11 + im13 − n13 = −K ,

m12 + in12 + im23 − n23 = 0 ,

m13 + in13 + im33 − n33 = − iK ,

m12 + in12 = − σ ,

m22 + in22 = −K ,

m23 + in23 = − iσ ,

m11 + in11 − im13 + n13 = −K ,

m12 + in12 − im23 + n23 = − τ ,

m13 + in13 − im33 + n33 = iK ,

where K = α+ iβ is one of the two 3-fold roots of the secular equation

|Rαβ −Kgαβ | = 0 ,

and the numbers σ and τ are arbitrary but not equal to zero. This
arbitrariness ensues from the arbitrariness of λ and is due to the isotropy
of the vectors W

1

α, W
3

α. For instance, one can assume that σ and τ are

real numbers.
By solving this system and also taking into account the conditions

3∑

s=1

esmss = κ ,

3∑

s=1

esnss = 0 ,
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one can check that τ = 2σ, β = 0, α = κ

3
, and the matrix ‖Rαβ‖ takes

the following form:

(Rαβ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

− κ

3
− σ 0 0 0 0

− σ − κ

3
0 0 0 − σ

0 0 − κ

3
0 −σ 0

0 0 0 κ

3
σ 0

0 0 − σ σ κ

3
0

0 − σ 0 0 0 κ

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, (33)

where σ is an arbitrary non-zero number; the frame is determined up
to a rotation in the two-dimensional plane {

1

ξ
3

ξ } and a Lorentz rotation

in the plane {
2

ξ
4

ξ }.

As the final result, we have the following theorem.

Theorem. There exist three fundamentally distinct types of gravita-
tional fields:

The 1st type, with the characteristic of the K-matrix of the simple
type [ 1 1 1 , 11 1 ], for which a real orthogonal frame is uniquely defined
at any point of T4, and with respect to which the matrix ‖Rαβ ‖ has the
form (23) under the conditions (24) and (25).

The 2nd type, with the characteristic of a non-simple type [ 2 1 , 2 1 ],
for which the frame is defined having two degrees of freedom, and the
matrix ‖Rαβ ‖ has the form (29) under the conditions (30).

The 3rd type has also the characteristic of a non-simple type [ 3, 3 ];
its frame has two degrees of freedom, and its matrix ‖Rαβ ‖ has the
form (33).

Here the overlined numbers in the characteristics denote the power
indices of those elementary divisors, whose bases are complex-conjugate
to the bases corresponding to the numbers without overlining.

The three indicated types obviously admit some further more de-
tailed classification. For example, one can distinguish the cases of mul-
tiple or real roots, as had been already done by the author earlier. This
result, which I have obtained in 1950, was first published in 1951 in [1].
There is an ambiguity in the formulation given in that paper. The
proof of the theorem from § 2 was also provided by A.P. Norden in 1952
(which was not published), whose starting point was from his study of
bi-affine spaces. The proof given here is the third one and it is probably
the simplest one.
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As for the study carried out in § 3 (i.e., the determination of the
canonical form of the matrix (Rαβ) for the orthogonal non-holonomic
frame), we have to make the following note. At first thought, one might
expect to approach this task in the following way: since the character-
istic of the matrix ‖Rαβ −Kgαβ ‖ is known, it seems to be possible to
write directly the canonical form of this matrix base on the general alge-
braic theory [6]. However, this cannot be done because the coefficients
of admissible linear real transformations can be taken only in the form

Aα′

α = 2A
[j′j′ ]
ij ,

where Ai′

i =
(

∂xi′

∂xi

)
P

are the coefficients of some real orthogonal trans-

formation at a given point P of the manifold T4. That is, we can only
use the transformations belonging to a subgroup of the group of all real
orthogonal transformations in a 6-dimensional space.

This fact, which requires the arguments of § 3, is in our case obvi-
ous; it is a specific application of a more general theorem proved by
G.B.Gurevich [7].
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